Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospcanN Structured version   Visualization version   GIF version

Theorem tendospcanN 40980
Description: Cancellation law for trace-preserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
tendospcan.b 𝐵 = (Base‘𝐾)
tendospcan.h 𝐻 = (LHyp‘𝐾)
tendospcan.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendospcan.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendospcan.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendospcanN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑆(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐺(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendospcanN
StepHypRef Expression
1 tendospcan.h . . . . . . . . . . . . . . . . . 18 𝐻 = (LHyp‘𝐾)
2 tendospcan.t . . . . . . . . . . . . . . . . . 18 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendospcan.e . . . . . . . . . . . . . . . . . 18 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocnv 40978 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) = (𝑆𝐺))
543adant3l 1180 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆𝐺) = (𝑆𝐺))
65coeq2d 5887 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
7 simp1 1136 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1137 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝑆𝐸)
9 simp3l 1201 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
10 simp3r 1202 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
111, 2ltrncnv 40103 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
127, 10, 11syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
131, 2, 3tendospdi1 40977 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
147, 8, 9, 12, 13syl13anc 1372 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
156, 14eqtr4d 2783 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1615adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1716eqeq1d 2742 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵)))
18 simpl1 1191 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1192 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝑆𝐸)
20 simpl3l 1228 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
211, 2, 3tendocl 40724 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐹) ∈ 𝑇)
23 simpl3r 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
241, 2, 3tendocl 40724 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
2518, 19, 23, 24syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐺) ∈ 𝑇)
26 tendospcan.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
2726, 1, 2ltrncoidN 40085 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇 ∧ (𝑆𝐺) ∈ 𝑇) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2818, 22, 25, 27syl3anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2918, 23, 11syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
301, 2ltrnco 40676 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
3118, 20, 29, 30syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ∈ 𝑇)
32 simpr 484 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))
33 tendospcan.o . . . . . . . . . . . . . 14 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3426, 1, 2, 3, 33tendoid0 40782 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ((𝐹𝐺) ∈ 𝑇 ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵))) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3518, 19, 31, 32, 34syl112anc 1374 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3617, 28, 353bitr3d 309 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝑆 = 𝑂))
3736biimpd 229 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) → 𝑆 = 𝑂))
3837impancom 451 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) ≠ ( I ↾ 𝐵) → 𝑆 = 𝑂))
3938necon1d 2968 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂 → (𝐹𝐺) = ( I ↾ 𝐵)))
40 simpl1 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpl3l 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐹𝑇)
42 simpl3r 1229 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐺𝑇)
4326, 1, 2ltrncoidN 40085 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4440, 41, 42, 43syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4539, 44sylibd 239 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂𝐹 = 𝐺))
46453exp1 1352 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → (𝑆𝑂𝐹 = 𝐺)))))
4746com24 95 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → (𝑆𝐸 → (𝑆𝑂𝐹 = 𝐺)))))
4847imp5a 440 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐸𝑆𝑂) → 𝐹 = 𝐺))))
4948com24 95 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐸𝑆𝑂) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))))
50493imp 1111 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))
51 fveq2 6920 . 2 (𝐹 = 𝐺 → (𝑆𝐹) = (𝑆𝐺))
5250, 51impbid1 225 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cmpt 5249   I cid 5592  ccnv 5699  cres 5702  ccom 5704  cfv 6573  Basecbs 17258  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712
This theorem is referenced by:  dihmeetlem13N  41276
  Copyright terms: Public domain W3C validator