Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospcanN Structured version   Visualization version   GIF version

Theorem tendospcanN 39883
Description: Cancellation law for trace-preserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
tendospcan.b 𝐵 = (Base‘𝐾)
tendospcan.h 𝐻 = (LHyp‘𝐾)
tendospcan.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendospcan.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendospcan.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendospcanN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑆(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐺(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendospcanN
StepHypRef Expression
1 tendospcan.h . . . . . . . . . . . . . . . . . 18 𝐻 = (LHyp‘𝐾)
2 tendospcan.t . . . . . . . . . . . . . . . . . 18 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendospcan.e . . . . . . . . . . . . . . . . . 18 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocnv 39881 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) = (𝑆𝐺))
543adant3l 1181 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆𝐺) = (𝑆𝐺))
65coeq2d 5861 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
7 simp1 1137 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1138 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝑆𝐸)
9 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
10 simp3r 1203 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
111, 2ltrncnv 39006 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
127, 10, 11syl2anc 585 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
131, 2, 3tendospdi1 39880 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
147, 8, 9, 12, 13syl13anc 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
156, 14eqtr4d 2776 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1615adantr 482 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1716eqeq1d 2735 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵)))
18 simpl1 1192 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1193 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝑆𝐸)
20 simpl3l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
211, 2, 3tendocl 39627 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐹) ∈ 𝑇)
23 simpl3r 1230 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
241, 2, 3tendocl 39627 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
2518, 19, 23, 24syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐺) ∈ 𝑇)
26 tendospcan.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
2726, 1, 2ltrncoidN 38988 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇 ∧ (𝑆𝐺) ∈ 𝑇) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2818, 22, 25, 27syl3anc 1372 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2918, 23, 11syl2anc 585 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
301, 2ltrnco 39579 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
3118, 20, 29, 30syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ∈ 𝑇)
32 simpr 486 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))
33 tendospcan.o . . . . . . . . . . . . . 14 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3426, 1, 2, 3, 33tendoid0 39685 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ((𝐹𝐺) ∈ 𝑇 ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵))) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3518, 19, 31, 32, 34syl112anc 1375 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3617, 28, 353bitr3d 309 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝑆 = 𝑂))
3736biimpd 228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) → 𝑆 = 𝑂))
3837impancom 453 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) ≠ ( I ↾ 𝐵) → 𝑆 = 𝑂))
3938necon1d 2963 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂 → (𝐹𝐺) = ( I ↾ 𝐵)))
40 simpl1 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpl3l 1229 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐹𝑇)
42 simpl3r 1230 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐺𝑇)
4326, 1, 2ltrncoidN 38988 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4440, 41, 42, 43syl3anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4539, 44sylibd 238 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂𝐹 = 𝐺))
46453exp1 1353 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → (𝑆𝑂𝐹 = 𝐺)))))
4746com24 95 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → (𝑆𝐸 → (𝑆𝑂𝐹 = 𝐺)))))
4847imp5a 442 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐸𝑆𝑂) → 𝐹 = 𝐺))))
4948com24 95 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐸𝑆𝑂) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))))
50493imp 1112 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))
51 fveq2 6889 . 2 (𝐹 = 𝐺 → (𝑆𝐹) = (𝑆𝐺))
5250, 51impbid1 224 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  cmpt 5231   I cid 5573  ccnv 5675  cres 5678  ccom 5680  cfv 6541  Basecbs 17141  HLchlt 38209  LHypclh 38844  LTrncltrn 38961  TEndoctendo 39612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-riotaBAD 37812
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-1st 7972  df-2nd 7973  df-undef 8255  df-map 8819  df-proset 18245  df-poset 18263  df-plt 18280  df-lub 18296  df-glb 18297  df-join 18298  df-meet 18299  df-p0 18375  df-p1 18376  df-lat 18382  df-clat 18449  df-oposet 38035  df-ol 38037  df-oml 38038  df-covers 38125  df-ats 38126  df-atl 38157  df-cvlat 38181  df-hlat 38210  df-llines 38358  df-lplanes 38359  df-lvols 38360  df-lines 38361  df-psubsp 38363  df-pmap 38364  df-padd 38656  df-lhyp 38848  df-laut 38849  df-ldil 38964  df-ltrn 38965  df-trl 39019  df-tendo 39615
This theorem is referenced by:  dihmeetlem13N  40179
  Copyright terms: Public domain W3C validator