Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospcanN Structured version   Visualization version   GIF version

Theorem tendospcanN 38649
Description: Cancellation law for trace-preserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
tendospcan.b 𝐵 = (Base‘𝐾)
tendospcan.h 𝐻 = (LHyp‘𝐾)
tendospcan.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendospcan.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendospcan.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendospcanN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑆(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐺(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendospcanN
StepHypRef Expression
1 tendospcan.h . . . . . . . . . . . . . . . . . 18 𝐻 = (LHyp‘𝐾)
2 tendospcan.t . . . . . . . . . . . . . . . . . 18 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendospcan.e . . . . . . . . . . . . . . . . . 18 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocnv 38647 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) = (𝑆𝐺))
543adant3l 1181 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆𝐺) = (𝑆𝐺))
65coeq2d 5699 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
7 simp1 1137 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1138 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝑆𝐸)
9 simp3l 1202 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
10 simp3r 1203 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
111, 2ltrncnv 37772 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
127, 10, 11syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
131, 2, 3tendospdi1 38646 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
147, 8, 9, 12, 13syl13anc 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
156, 14eqtr4d 2776 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1615adantr 484 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1716eqeq1d 2740 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵)))
18 simpl1 1192 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1193 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝑆𝐸)
20 simpl3l 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
211, 2, 3tendocl 38393 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐹) ∈ 𝑇)
23 simpl3r 1230 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
241, 2, 3tendocl 38393 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
2518, 19, 23, 24syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐺) ∈ 𝑇)
26 tendospcan.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
2726, 1, 2ltrncoidN 37754 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇 ∧ (𝑆𝐺) ∈ 𝑇) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2818, 22, 25, 27syl3anc 1372 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2918, 23, 11syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
301, 2ltrnco 38345 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
3118, 20, 29, 30syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ∈ 𝑇)
32 simpr 488 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))
33 tendospcan.o . . . . . . . . . . . . . 14 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3426, 1, 2, 3, 33tendoid0 38451 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ((𝐹𝐺) ∈ 𝑇 ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵))) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3518, 19, 31, 32, 34syl112anc 1375 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3617, 28, 353bitr3d 312 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝑆 = 𝑂))
3736biimpd 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) → 𝑆 = 𝑂))
3837impancom 455 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) ≠ ( I ↾ 𝐵) → 𝑆 = 𝑂))
3938necon1d 2956 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂 → (𝐹𝐺) = ( I ↾ 𝐵)))
40 simpl1 1192 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpl3l 1229 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐹𝑇)
42 simpl3r 1230 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐺𝑇)
4326, 1, 2ltrncoidN 37754 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4440, 41, 42, 43syl3anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4539, 44sylibd 242 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂𝐹 = 𝐺))
46453exp1 1353 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → (𝑆𝑂𝐹 = 𝐺)))))
4746com24 95 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → (𝑆𝐸 → (𝑆𝑂𝐹 = 𝐺)))))
4847imp5a 444 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐸𝑆𝑂) → 𝐹 = 𝐺))))
4948com24 95 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐸𝑆𝑂) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))))
50493imp 1112 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))
51 fveq2 6668 . 2 (𝐹 = 𝐺 → (𝑆𝐹) = (𝑆𝐺))
5250, 51impbid1 228 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  cmpt 5107   I cid 5424  ccnv 5518  cres 5521  ccom 5523  cfv 6333  Basecbs 16579  HLchlt 36976  LHypclh 37610  LTrncltrn 37727  TEndoctendo 38378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-riotaBAD 36579
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-1st 7707  df-2nd 7708  df-undef 7961  df-map 8432  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-p1 17759  df-lat 17765  df-clat 17827  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977  df-llines 37124  df-lplanes 37125  df-lvols 37126  df-lines 37127  df-psubsp 37129  df-pmap 37130  df-padd 37422  df-lhyp 37614  df-laut 37615  df-ldil 37730  df-ltrn 37731  df-trl 37785  df-tendo 38381
This theorem is referenced by:  dihmeetlem13N  38945
  Copyright terms: Public domain W3C validator