Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospcanN Structured version   Visualization version   GIF version

Theorem tendospcanN 41026
Description: Cancellation law for trace-preserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
tendospcan.b 𝐵 = (Base‘𝐾)
tendospcan.h 𝐻 = (LHyp‘𝐾)
tendospcan.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendospcan.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendospcan.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendospcanN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝑆(𝑓)   𝐸(𝑓)   𝐹(𝑓)   𝐺(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendospcanN
StepHypRef Expression
1 tendospcan.h . . . . . . . . . . . . . . . . . 18 𝐻 = (LHyp‘𝐾)
2 tendospcan.t . . . . . . . . . . . . . . . . . 18 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendospcan.e . . . . . . . . . . . . . . . . . 18 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocnv 41024 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) = (𝑆𝐺))
543adant3l 1180 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆𝐺) = (𝑆𝐺))
65coeq2d 5872 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
7 simp1 1136 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simp2 1137 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝑆𝐸)
9 simp3l 1201 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐹𝑇)
10 simp3r 1202 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
111, 2ltrncnv 40149 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
127, 10, 11syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → 𝐺𝑇)
131, 2, 3tendospdi1 41023 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
147, 8, 9, 12, 13syl13anc 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
156, 14eqtr4d 2779 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1615adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) ∘ (𝑆𝐺)) = (𝑆‘(𝐹𝐺)))
1716eqeq1d 2738 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵)))
18 simpl1 1191 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2 1192 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝑆𝐸)
20 simpl3l 1228 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐹𝑇)
211, 2, 3tendocl 40770 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐹) ∈ 𝑇)
23 simpl3r 1229 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
241, 2, 3tendocl 40770 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐺𝑇) → (𝑆𝐺) ∈ 𝑇)
2518, 19, 23, 24syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝑆𝐺) ∈ 𝑇)
26 tendospcan.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
2726, 1, 2ltrncoidN 40131 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇 ∧ (𝑆𝐺) ∈ 𝑇) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2818, 22, 25, 27syl3anc 1372 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (((𝑆𝐹) ∘ (𝑆𝐺)) = ( I ↾ 𝐵) ↔ (𝑆𝐹) = (𝑆𝐺)))
2918, 23, 11syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → 𝐺𝑇)
301, 2ltrnco 40722 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
3118, 20, 29, 30syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ∈ 𝑇)
32 simpr 484 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → (𝐹𝐺) ≠ ( I ↾ 𝐵))
33 tendospcan.o . . . . . . . . . . . . . 14 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
3426, 1, 2, 3, 33tendoid0 40828 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ ((𝐹𝐺) ∈ 𝑇 ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵))) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3518, 19, 31, 32, 34syl112anc 1375 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆‘(𝐹𝐺)) = ( I ↾ 𝐵) ↔ 𝑆 = 𝑂))
3617, 28, 353bitr3d 309 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝑆 = 𝑂))
3736biimpd 229 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) ≠ ( I ↾ 𝐵)) → ((𝑆𝐹) = (𝑆𝐺) → 𝑆 = 𝑂))
3837impancom 451 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) ≠ ( I ↾ 𝐵) → 𝑆 = 𝑂))
3938necon1d 2961 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂 → (𝐹𝐺) = ( I ↾ 𝐵)))
40 simpl1 1191 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41 simpl3l 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐹𝑇)
42 simpl3r 1229 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → 𝐺𝑇)
4326, 1, 2ltrncoidN 40131 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4440, 41, 42, 43syl3anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
4539, 44sylibd 239 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝑆𝐹) = (𝑆𝐺)) → (𝑆𝑂𝐹 = 𝐺))
46453exp1 1352 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆𝐸 → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → (𝑆𝑂𝐹 = 𝐺)))))
4746com24 95 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → (𝑆𝐸 → (𝑆𝑂𝐹 = 𝐺)))))
4847imp5a 440 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐹) = (𝑆𝐺) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐸𝑆𝑂) → 𝐹 = 𝐺))))
4948com24 95 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑆𝐸𝑆𝑂) → ((𝐹𝑇𝐺𝑇) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))))
50493imp 1110 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) → 𝐹 = 𝐺))
51 fveq2 6905 . 2 (𝐹 = 𝐺 → (𝑆𝐹) = (𝑆𝐺))
5250, 51impbid1 225 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑆𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑆𝐹) = (𝑆𝐺) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  cmpt 5224   I cid 5576  ccnv 5683  cres 5686  ccom 5688  cfv 6560  Basecbs 17248  HLchlt 39352  LHypclh 39987  LTrncltrn 40104  TEndoctendo 40755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-undef 8299  df-map 8869  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-tendo 40758
This theorem is referenced by:  dihmeetlem13N  41322
  Copyright terms: Public domain W3C validator