![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orass | Structured version Visualization version GIF version |
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
orass | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 870 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑 ∨ 𝜓))) | |
2 | or12 920 | . 2 ⊢ ((𝜒 ∨ (𝜑 ∨ 𝜓)) ↔ (𝜑 ∨ (𝜒 ∨ 𝜓))) | |
3 | orcom 870 | . . 3 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
4 | 3 | orbi2i 912 | . 2 ⊢ ((𝜑 ∨ (𝜒 ∨ 𝜓)) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: pm2.31 922 pm2.32 923 or32 925 or4 926 3orass 1089 axi12 2704 axbnd 2705 unass 4182 tppreqb 4810 ltxr 13155 lcmass 16648 plydivex 26354 clwwlkneq0 30058 disjxpin 32608 wl-ifpimpr 37449 impor 38068 ifpim123g 43490 |
Copyright terms: Public domain | W3C validator |