| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orass | Structured version Visualization version GIF version | ||
| Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| orass | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 870 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑 ∨ 𝜓))) | |
| 2 | or12 920 | . 2 ⊢ ((𝜒 ∨ (𝜑 ∨ 𝜓)) ↔ (𝜑 ∨ (𝜒 ∨ 𝜓))) | |
| 3 | orcom 870 | . . 3 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 4 | 3 | orbi2i 912 | . 2 ⊢ ((𝜑 ∨ (𝜒 ∨ 𝜓)) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.31 922 pm2.32 923 or32 925 or4 926 3orass 1089 axi12 2706 axbnd 2707 unass 4152 tppreqb 4786 ltxr 13136 lcmass 16638 plydivex 26262 clwwlkneq0 30015 disjxpin 32574 wl-ifpimpr 37489 impor 38110 ifpim123g 43491 |
| Copyright terms: Public domain | W3C validator |