Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsun Structured version   Visualization version   GIF version

Theorem lindsun 32068
Description: Condition for the union of two independent sets to be an independent set. (Contributed by Thierry Arnoux, 9-May-2023.)
Hypotheses
Ref Expression
lindsun.n 𝑁 = (LSpan‘𝑊)
lindsun.0 0 = (0g𝑊)
lindsun.w (𝜑𝑊 ∈ LVec)
lindsun.u (𝜑𝑈 ∈ (LIndS‘𝑊))
lindsun.v (𝜑𝑉 ∈ (LIndS‘𝑊))
lindsun.2 (𝜑 → ((𝑁𝑈) ∩ (𝑁𝑉)) = { 0 })
Assertion
Ref Expression
lindsun (𝜑 → (𝑈𝑉) ∈ (LIndS‘𝑊))

Proof of Theorem lindsun
Dummy variables 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsun.w . . 3 (𝜑𝑊 ∈ LVec)
2 lveclmod 20478 . . 3 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . 2 (𝜑𝑊 ∈ LMod)
4 lindsun.u . . . 4 (𝜑𝑈 ∈ (LIndS‘𝑊))
5 eqid 2737 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
65linds1 21127 . . . 4 (𝑈 ∈ (LIndS‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
74, 6syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝑊))
8 lindsun.v . . . 4 (𝜑𝑉 ∈ (LIndS‘𝑊))
95linds1 21127 . . . 4 (𝑉 ∈ (LIndS‘𝑊) → 𝑉 ⊆ (Base‘𝑊))
108, 9syl 17 . . 3 (𝜑𝑉 ⊆ (Base‘𝑊))
117, 10unssd 4141 . 2 (𝜑 → (𝑈𝑉) ⊆ (Base‘𝑊))
12 lindsun.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
13 lindsun.0 . . . . . . . . . 10 0 = (0g𝑊)
141ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → 𝑊 ∈ LVec)
154ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → 𝑈 ∈ (LIndS‘𝑊))
168ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → 𝑉 ∈ (LIndS‘𝑊))
17 lindsun.2 . . . . . . . . . . 11 (𝜑 → ((𝑁𝑈) ∩ (𝑁𝑉)) = { 0 })
1817ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → ((𝑁𝑈) ∩ (𝑁𝑉)) = { 0 })
19 eqid 2737 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
20 eqid 2737 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
21 simpr 486 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → 𝑐𝑈)
22 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
23 simplr 767 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))
2412, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23lindsunlem 32067 . . . . . . . . 9 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑈) → ⊥)
2524adantlr 713 . . . . . . . 8 (((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈𝑉)) ∧ 𝑐𝑈) → ⊥)
261ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → 𝑊 ∈ LVec)
278ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → 𝑉 ∈ (LIndS‘𝑊))
284ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → 𝑈 ∈ (LIndS‘𝑊))
29 incom 4156 . . . . . . . . . . . 12 ((𝑁𝑈) ∩ (𝑁𝑉)) = ((𝑁𝑉) ∩ (𝑁𝑈))
3029, 17eqtr3id 2791 . . . . . . . . . . 11 (𝜑 → ((𝑁𝑉) ∩ (𝑁𝑈)) = { 0 })
3130ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → ((𝑁𝑉) ∩ (𝑁𝑈)) = { 0 })
32 simpr 486 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → 𝑐𝑉)
33 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
34 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))
35 uncom 4108 . . . . . . . . . . . . 13 (𝑈𝑉) = (𝑉𝑈)
3635difeq1i 4073 . . . . . . . . . . . 12 ((𝑈𝑉) ∖ {𝑐}) = ((𝑉𝑈) ∖ {𝑐})
3736fveq2i 6837 . . . . . . . . . . 11 (𝑁‘((𝑈𝑉) ∖ {𝑐})) = (𝑁‘((𝑉𝑈) ∖ {𝑐}))
3834, 37eleqtrdi 2848 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑉𝑈) ∖ {𝑐})))
3912, 13, 26, 27, 28, 31, 19, 20, 32, 33, 38lindsunlem 32067 . . . . . . . . 9 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐𝑉) → ⊥)
4039adantlr 713 . . . . . . . 8 (((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈𝑉)) ∧ 𝑐𝑉) → ⊥)
41 elun 4103 . . . . . . . . . 10 (𝑐 ∈ (𝑈𝑉) ↔ (𝑐𝑈𝑐𝑉))
4241biimpi 215 . . . . . . . . 9 (𝑐 ∈ (𝑈𝑉) → (𝑐𝑈𝑐𝑉))
4342adantl 483 . . . . . . . 8 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈𝑉)) → (𝑐𝑈𝑐𝑉))
4425, 40, 43mpjaodan 957 . . . . . . 7 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈𝑉)) → ⊥)
4544an32s 650 . . . . . 6 ((((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ 𝑐 ∈ (𝑈𝑉)) ∧ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐}))) → ⊥)
4645inegd 1561 . . . . 5 (((𝜑𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ 𝑐 ∈ (𝑈𝑉)) → ¬ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))
4746an32s 650 . . . 4 (((𝜑𝑐 ∈ (𝑈𝑉)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))
4847anasss 468 . . 3 ((𝜑 ∧ (𝑐 ∈ (𝑈𝑉) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))
4948ralrimivva 3195 . 2 (𝜑 → ∀𝑐 ∈ (𝑈𝑉)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))
50 eqid 2737 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
51 eqid 2737 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
525, 50, 12, 51, 20, 19islinds2 21130 . . 3 (𝑊 ∈ LMod → ((𝑈𝑉) ∈ (LIndS‘𝑊) ↔ ((𝑈𝑉) ⊆ (Base‘𝑊) ∧ ∀𝑐 ∈ (𝑈𝑉)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))))
5352biimpar 479 . 2 ((𝑊 ∈ LMod ∧ ((𝑈𝑉) ⊆ (Base‘𝑊) ∧ ∀𝑐 ∈ (𝑈𝑉)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑐) ∈ (𝑁‘((𝑈𝑉) ∖ {𝑐})))) → (𝑈𝑉) ∈ (LIndS‘𝑊))
543, 11, 49, 53syl12anc 835 1 (𝜑 → (𝑈𝑉) ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845   = wceq 1541  wfal 1553  wcel 2106  wral 3062  cdif 3902  cun 3903  cin 3904  wss 3905  {csn 4581  cfv 6488  (class class class)co 7346  Basecbs 17014  Scalarcsca 17067   ·𝑠 cvsca 17068  0gc0g 17252  LModclmod 20233  LSpanclspn 20343  LVecclvec 20474  LIndSclinds 21122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-tpos 8121  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-2 12146  df-3 12147  df-sets 16967  df-slot 16985  df-ndx 16997  df-base 17015  df-ress 17044  df-plusg 17077  df-mulr 17078  df-0g 17254  df-mgm 18428  df-sgrp 18477  df-mnd 18488  df-submnd 18533  df-grp 18681  df-minusg 18682  df-sbg 18683  df-subg 18853  df-cntz 19024  df-lsm 19342  df-cmn 19488  df-abl 19489  df-mgp 19820  df-ur 19837  df-ring 19884  df-oppr 19961  df-dvdsr 19982  df-unit 19983  df-drng 20099  df-lmod 20235  df-lss 20304  df-lsp 20344  df-lvec 20475  df-lindf 21123  df-linds 21124
This theorem is referenced by:  ccfldextdgrr  32104
  Copyright terms: Public domain W3C validator