Step | Hyp | Ref
| Expression |
1 | | lindsun.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ LVec) |
2 | | lveclmod 20368 |
. . 3
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | | lindsun.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ (LIndS‘𝑊)) |
5 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
6 | 5 | linds1 21017 |
. . . 4
⊢ (𝑈 ∈ (LIndS‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
7 | 4, 6 | syl 17 |
. . 3
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑊)) |
8 | | lindsun.v |
. . . 4
⊢ (𝜑 → 𝑉 ∈ (LIndS‘𝑊)) |
9 | 5 | linds1 21017 |
. . . 4
⊢ (𝑉 ∈ (LIndS‘𝑊) → 𝑉 ⊆ (Base‘𝑊)) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝑊)) |
11 | 7, 10 | unssd 4120 |
. 2
⊢ (𝜑 → (𝑈 ∪ 𝑉) ⊆ (Base‘𝑊)) |
12 | | lindsun.n |
. . . . . . . . . 10
⊢ 𝑁 = (LSpan‘𝑊) |
13 | | lindsun.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
14 | 1 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → 𝑊 ∈ LVec) |
15 | 4 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → 𝑈 ∈ (LIndS‘𝑊)) |
16 | 8 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → 𝑉 ∈ (LIndS‘𝑊)) |
17 | | lindsun.2 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁‘𝑈) ∩ (𝑁‘𝑉)) = { 0 }) |
18 | 17 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → ((𝑁‘𝑈) ∩ (𝑁‘𝑉)) = { 0 }) |
19 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
21 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → 𝑐 ∈ 𝑈) |
22 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) |
23 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) |
24 | 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23 | lindsunlem 31705 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑈) → ⊥) |
25 | 24 | adantlr 712 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈 ∪ 𝑉)) ∧ 𝑐 ∈ 𝑈) → ⊥) |
26 | 1 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → 𝑊 ∈ LVec) |
27 | 8 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → 𝑉 ∈ (LIndS‘𝑊)) |
28 | 4 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → 𝑈 ∈ (LIndS‘𝑊)) |
29 | | incom 4135 |
. . . . . . . . . . . 12
⊢ ((𝑁‘𝑈) ∩ (𝑁‘𝑉)) = ((𝑁‘𝑉) ∩ (𝑁‘𝑈)) |
30 | 29, 17 | eqtr3id 2792 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁‘𝑉) ∩ (𝑁‘𝑈)) = { 0 }) |
31 | 30 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → ((𝑁‘𝑉) ∩ (𝑁‘𝑈)) = { 0 }) |
32 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → 𝑐 ∈ 𝑉) |
33 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) |
34 | | simplr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) |
35 | | uncom 4087 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∪ 𝑉) = (𝑉 ∪ 𝑈) |
36 | 35 | difeq1i 4053 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∪ 𝑉) ∖ {𝑐}) = ((𝑉 ∪ 𝑈) ∖ {𝑐}) |
37 | 36 | fveq2i 6777 |
. . . . . . . . . . 11
⊢ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐})) = (𝑁‘((𝑉 ∪ 𝑈) ∖ {𝑐})) |
38 | 34, 37 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑉 ∪ 𝑈) ∖ {𝑐}))) |
39 | 12, 13, 26, 27, 28, 31, 19, 20, 32, 33, 38 | lindsunlem 31705 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ 𝑉) → ⊥) |
40 | 39 | adantlr 712 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈 ∪ 𝑉)) ∧ 𝑐 ∈ 𝑉) → ⊥) |
41 | | elun 4083 |
. . . . . . . . . 10
⊢ (𝑐 ∈ (𝑈 ∪ 𝑉) ↔ (𝑐 ∈ 𝑈 ∨ 𝑐 ∈ 𝑉)) |
42 | 41 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑐 ∈ (𝑈 ∪ 𝑉) → (𝑐 ∈ 𝑈 ∨ 𝑐 ∈ 𝑉)) |
43 | 42 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈 ∪ 𝑉)) → (𝑐 ∈ 𝑈 ∨ 𝑐 ∈ 𝑉)) |
44 | 25, 40, 43 | mpjaodan 956 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) ∧ 𝑐 ∈ (𝑈 ∪ 𝑉)) → ⊥) |
45 | 44 | an32s 649 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ 𝑐 ∈ (𝑈 ∪ 𝑉)) ∧ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) → ⊥) |
46 | 45 | inegd 1559 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ 𝑐 ∈ (𝑈 ∪ 𝑉)) → ¬ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) |
47 | 46 | an32s 649 |
. . . 4
⊢ (((𝜑 ∧ 𝑐 ∈ (𝑈 ∪ 𝑉)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ¬ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) |
48 | 47 | anasss 467 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ (𝑈 ∪ 𝑉) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) |
49 | 48 | ralrimivva 3123 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ (𝑈 ∪ 𝑉)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))) |
50 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
51 | | eqid 2738 |
. . . 4
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
52 | 5, 50, 12, 51, 20, 19 | islinds2 21020 |
. . 3
⊢ (𝑊 ∈ LMod → ((𝑈 ∪ 𝑉) ∈ (LIndS‘𝑊) ↔ ((𝑈 ∪ 𝑉) ⊆ (Base‘𝑊) ∧ ∀𝑐 ∈ (𝑈 ∪ 𝑉)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐}))))) |
53 | 52 | biimpar 478 |
. 2
⊢ ((𝑊 ∈ LMod ∧ ((𝑈 ∪ 𝑉) ⊆ (Base‘𝑊) ∧ ∀𝑐 ∈ (𝑈 ∪ 𝑉)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑐) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝑐})))) → (𝑈 ∪ 𝑉) ∈ (LIndS‘𝑊)) |
54 | 3, 11, 49, 53 | syl12anc 834 |
1
⊢ (𝜑 → (𝑈 ∪ 𝑉) ∈ (LIndS‘𝑊)) |