![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglndim0 | Structured version Visualization version GIF version |
Description: There are no lines in dimension 0. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglndim0.d | ⊢ (𝜑 → (♯‘𝐵) = 1) |
Ref | Expression |
---|---|
tglndim0 | ⊢ (𝜑 → ¬ 𝐴 ∈ ran 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglndim0.d | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) = 1) | |
3 | 2 | ad4antr 730 | . . . . 5 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → (♯‘𝐵) = 1) |
4 | simpllr 774 | . . . . 5 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐵) | |
5 | simplr 767 | . . . . 5 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐵) | |
6 | 1, 3, 4, 5 | tgldim0eq 28327 | . . . 4 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 = 𝑦) |
7 | simprr 771 | . . . 4 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
8 | 6, 7 | pm2.21ddne 3023 | . . 3 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ⊥) |
9 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
10 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
11 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
12 | 11 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → 𝐺 ∈ TarskiG) |
13 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → 𝐴 ∈ ran 𝐿) | |
14 | 1, 9, 10, 12, 13 | tgisline 28451 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
15 | 8, 14 | r19.29vva 3211 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → ⊥) |
16 | 15 | inegd 1553 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ ran 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ⊥wfal 1545 ∈ wcel 2098 ≠ wne 2937 ran crn 5683 ‘cfv 6553 (class class class)co 7426 1c1 11147 ♯chash 14329 Basecbs 17187 TarskiGcstrkg 28251 Itvcitv 28257 LineGclng 28258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14330 df-trkg 28277 |
This theorem is referenced by: hpgerlem 28589 |
Copyright terms: Public domain | W3C validator |