![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglndim0 | Structured version Visualization version GIF version |
Description: There are no lines in dimension 0. (Contributed by Thierry Arnoux, 18-Oct-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglndim0.d | ⊢ (𝜑 → (♯‘𝐵) = 1) |
Ref | Expression |
---|---|
tglndim0 | ⊢ (𝜑 → ¬ 𝐴 ∈ ran 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglndim0.d | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) = 1) | |
3 | 2 | ad4antr 728 | . . . . 5 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → (♯‘𝐵) = 1) |
4 | simpllr 772 | . . . . 5 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐵) | |
5 | simplr 765 | . . . . 5 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐵) | |
6 | 1, 3, 4, 5 | tgldim0eq 25971 | . . . 4 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 = 𝑦) |
7 | simprr 769 | . . . 4 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
8 | 6, 7 | pm2.21ddne 3069 | . . 3 ⊢ (((((𝜑 ∧ 𝐴 ∈ ran 𝐿) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ⊥) |
9 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
10 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
11 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → 𝐺 ∈ TarskiG) |
13 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → 𝐴 ∈ ran 𝐿) | |
14 | 1, 9, 10, 12, 13 | tgisline 26095 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
15 | 8, 14 | r19.29vva 3297 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ran 𝐿) → ⊥) |
16 | 15 | inegd 1542 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ ran 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1522 ⊥wfal 1534 ∈ wcel 2081 ≠ wne 2984 ran crn 5444 ‘cfv 6225 (class class class)co 7016 1c1 10384 ♯chash 13540 Basecbs 16312 TarskiGcstrkg 25898 Itvcitv 25904 LineGclng 25905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-dju 9176 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-hash 13541 df-trkg 25921 |
This theorem is referenced by: hpgerlem 26233 |
Copyright terms: Public domain | W3C validator |