Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-eqtransd Structured version   Visualization version   GIF version

Theorem int-eqtransd 41688
Description: EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-eqtransd.1 (𝜑𝐴 = 𝐵)
int-eqtransd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
int-eqtransd (𝜑𝐴 = 𝐶)

Proof of Theorem int-eqtransd
StepHypRef Expression
1 int-eqtransd.1 . 2 (𝜑𝐴 = 𝐵)
2 int-eqtransd.2 . 2 (𝜑𝐵 = 𝐶)
31, 2eqtrd 2778 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator