Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-eqprincd Structured version   Visualization version   GIF version

Theorem int-eqprincd 43589
Description: PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-eqprincd.1 (𝜑𝐴 = 𝐵)
int-eqprincd.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
int-eqprincd (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷))

Proof of Theorem int-eqprincd
StepHypRef Expression
1 int-eqprincd.1 . 2 (𝜑𝐴 = 𝐵)
2 int-eqprincd.2 . 2 (𝜑𝐶 = 𝐷)
31, 2oveq12d 7432 1 (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  (class class class)co 7414   + caddc 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-ov 7417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator