Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-eqprincd | Structured version Visualization version GIF version |
Description: PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-eqprincd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
int-eqprincd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
int-eqprincd | ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-eqprincd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | int-eqprincd.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveq12d 7286 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 (class class class)co 7268 + caddc 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |