![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-eqprincd | Structured version Visualization version GIF version |
Description: PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-eqprincd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
int-eqprincd.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
int-eqprincd | ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-eqprincd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | int-eqprincd.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | 1, 2 | oveq12d 7432 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 (class class class)co 7414 + caddc 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |