Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-eqprincd Structured version   Visualization version   GIF version

Theorem int-eqprincd 44193
Description: PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-eqprincd.1 (𝜑𝐴 = 𝐵)
int-eqprincd.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
int-eqprincd (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷))

Proof of Theorem int-eqprincd
StepHypRef Expression
1 int-eqprincd.1 . 2 (𝜑𝐴 = 𝐵)
2 int-eqprincd.2 . 2 (𝜑𝐶 = 𝐷)
31, 2oveq12d 7456 1 (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  (class class class)co 7438   + caddc 11165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator