Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3lem3 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3lem4 46118. (Contributed by Zhi Wang, 4-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3lem3 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
2 | anass 468 | . . 3 ⊢ (((𝜑 ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓) ↔ (𝜑 ∧ ((𝜒 ∧ 𝜃) ∧ 𝜓))) | |
3 | 3anass 1093 | . . . 4 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜒 ∧ 𝜃))) | |
4 | 3 | anbi1i 623 | . . 3 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓) ↔ ((𝜑 ∧ (𝜒 ∧ 𝜃)) ∧ 𝜓)) |
5 | ancom 460 | . . . 4 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜒 ∧ 𝜃) ∧ 𝜓)) | |
6 | 5 | anbi2i 622 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ ((𝜒 ∧ 𝜃) ∧ 𝜓))) |
7 | 2, 4, 6 | 3bitr4ri 303 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) |
8 | 1, 7 | bitri 274 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: iscnrm3lem4 46118 |
Copyright terms: Public domain | W3C validator |