Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3lem3 Structured version   Visualization version   GIF version

Theorem iscnrm3lem3 46229
Description: Lemma for iscnrm3lem4 46230. (Contributed by Zhi Wang, 4-Sep-2024.)
Assertion
Ref Expression
iscnrm3lem3 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒𝜃) ∧ 𝜓))

Proof of Theorem iscnrm3lem3
StepHypRef Expression
1 anass 469 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒𝜃))))
2 anass 469 . . 3 (((𝜑 ∧ (𝜒𝜃)) ∧ 𝜓) ↔ (𝜑 ∧ ((𝜒𝜃) ∧ 𝜓)))
3 3anass 1094 . . . 4 ((𝜑𝜒𝜃) ↔ (𝜑 ∧ (𝜒𝜃)))
43anbi1i 624 . . 3 (((𝜑𝜒𝜃) ∧ 𝜓) ↔ ((𝜑 ∧ (𝜒𝜃)) ∧ 𝜓))
5 ancom 461 . . . 4 ((𝜓 ∧ (𝜒𝜃)) ↔ ((𝜒𝜃) ∧ 𝜓))
65anbi2i 623 . . 3 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) ↔ (𝜑 ∧ ((𝜒𝜃) ∧ 𝜓)))
72, 4, 63bitr4ri 304 . 2 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) ↔ ((𝜑𝜒𝜃) ∧ 𝜓))
81, 7bitri 274 1 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒𝜃) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  iscnrm3lem4  46230
  Copyright terms: Public domain W3C validator