Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3lem4 | Structured version Visualization version GIF version |
Description: Lemma for iscnrm3lem5 46119 and iscnrm3r 46130. (Contributed by Zhi Wang, 4-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3lem4.1 | ⊢ (𝜂 → (𝜓 → 𝜁)) |
iscnrm3lem4.2 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) |
iscnrm3lem4.3 | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜁 → 𝜏)) |
Ref | Expression |
---|---|
iscnrm3lem4 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3lem3 46117 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) | |
2 | iscnrm3lem4.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) | |
3 | iscnrm3lem4.1 | . . . . . 6 ⊢ (𝜂 → (𝜓 → 𝜁)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 → 𝜁)) |
5 | iscnrm3lem4.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜁 → 𝜏)) | |
6 | 4, 5 | syld 47 | . . . 4 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 → 𝜏)) |
7 | 6 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓) → 𝜏) |
8 | 1, 7 | sylbi 216 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
9 | 8 | exp43 436 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: iscnrm3lem5 46119 iscnrm3r 46130 |
Copyright terms: Public domain | W3C validator |