Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3lem4 Structured version   Visualization version   GIF version

Theorem iscnrm3lem4 46118
Description: Lemma for iscnrm3lem5 46119 and iscnrm3r 46130. (Contributed by Zhi Wang, 4-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3lem4.1 (𝜂 → (𝜓𝜁))
iscnrm3lem4.2 ((𝜑𝜒𝜃) → 𝜂)
iscnrm3lem4.3 ((𝜑𝜒𝜃) → (𝜁𝜏))
Assertion
Ref Expression
iscnrm3lem4 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem iscnrm3lem4
StepHypRef Expression
1 iscnrm3lem3 46117 . . 3 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒𝜃) ∧ 𝜓))
2 iscnrm3lem4.2 . . . . . 6 ((𝜑𝜒𝜃) → 𝜂)
3 iscnrm3lem4.1 . . . . . 6 (𝜂 → (𝜓𝜁))
42, 3syl 17 . . . . 5 ((𝜑𝜒𝜃) → (𝜓𝜁))
5 iscnrm3lem4.3 . . . . 5 ((𝜑𝜒𝜃) → (𝜁𝜏))
64, 5syld 47 . . . 4 ((𝜑𝜒𝜃) → (𝜓𝜏))
76imp 406 . . 3 (((𝜑𝜒𝜃) ∧ 𝜓) → 𝜏)
81, 7sylbi 216 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
98exp43 436 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  iscnrm3lem5  46119  iscnrm3r  46130
  Copyright terms: Public domain W3C validator