![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 275 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biadan 815 pm4.78 931 xor 1011 cases2 1044 nic-ax 1673 nfnbi 1855 2sb6 2087 2sb5 2269 dfsb7 2273 2sb5rf 2469 2sb6rf 2470 eu6lem 2565 eu6 2566 2mo2 2641 2eu7 2651 2eu8 2652 euae 2653 r2exlem 3141 r3al 3194 risset 3228 ralcom4 3281 rexcom4 3283 moelOLD 3399 rabbi 3460 ralxpxfr2d 3633 reuind 3748 undif3 4289 unab 4297 inab 4298 n0el 4360 inssdif0 4368 ssundif 4486 ralf0OLD 4516 raldifsnb 4798 pwtp 4902 uniprOLD 4926 uni0b 4936 iinuni 5100 reusv2lem4 5398 pwtr 5451 opthprc 5739 xpiundir 5746 xpsspw 5808 relun 5810 inopab 5828 difopab 5829 difopabOLD 5830 ralxpf 5845 dmiun 5912 elidinxp 6042 iresn0n0 6052 inisegn0 6096 rniun 6146 imaco 6249 rnco 6250 mptfnf 6684 fnopabg 6686 dff1o2 6837 brprcneu 6880 brprcneuALT 6881 idref 7145 imaiun 7246 sorpss 7720 opabex3d 7954 opabex3rd 7955 opabex3 7956 ovmptss 8081 frpoins3xpg 8128 frpoins3xp3g 8129 poxp2 8131 poxp3 8138 fnsuppres 8178 sbthfilem 9203 ttrcltr 9713 rankc1 9867 aceq1 10114 dfac10 10134 fin41 10441 axgroth6 10825 genpass 11006 infm3 12177 prime 12647 elixx3g 13341 elfz2 13495 elfzuzb 13499 rpnnen2lem12 16172 divalgb 16351 1nprm 16620 maxprmfct 16650 vdwmc 16915 imasleval 17491 issubm 18720 issubg3 19060 efgrelexlemb 19659 isdomn5 21117 ist1-2 23071 unisngl 23251 elflim2 23688 isfcls 23733 istlm 23909 isnlm 24412 ishl2 25118 ovoliunlem1 25251 erclwwlkref 29540 erclwwlknref 29589 0wlk 29636 h1de2ctlem 31075 nonbooli 31171 5oalem7 31180 ho01i 31348 rnbra 31627 cvnbtwn3 31808 chrelat2i 31885 difrab2 32005 uniinn0 32049 disjex 32090 maprnin 32223 ordtconnlem1 33202 esum2dlem 33388 eulerpartgbij 33669 eulerpartlemr 33671 eulerpartlemn 33678 ballotlem2 33785 bnj976 34086 bnj1185 34102 bnj543 34202 bnj571 34215 bnj611 34227 bnj916 34242 bnj1000 34250 bnj1040 34281 iscvm 34548 untuni 34982 dfso3 34993 dffr5 35028 elima4 35051 brtxpsd3 35172 brbigcup 35174 fixcnv 35184 ellimits 35186 elfuns 35191 brimage 35202 brcart 35208 brimg 35213 brapply 35214 brcup 35215 brcap 35216 dfrdg4 35227 dfint3 35228 ellines 35428 elicc3 35505 bj-snsetex 36147 bj-snglc 36153 bj-projun 36178 wl-2xor 36667 wl-cases2-dnf 36684 poimirlem27 36818 mblfinlem2 36829 iscrngo2 37168 n0elqs 37498 inxpxrn 37568 eqvrelcoss3 37791 prtlem70 38030 prtlem100 38032 prtlem15 38048 prter2 38054 lcvnbtwn3 38201 ishlat1 38525 ishlat2 38526 hlrelat2 38577 islpln5 38709 islvol5 38753 pclclN 39065 cdleme0nex 39464 aaitgo 42206 isdomn3 42248 onmaxnelsup 42274 onsupnmax 42279 nnoeomeqom 42364 imaiun1 42704 relexp0eq 42754 ntrk1k3eqk13 43103 2sbc6g 43476 2sbc5g 43477 2reu7 46117 2reu8 46118 mosssn2 47588 iscnrm3lem3 47655 alsconv 47924 |
Copyright terms: Public domain | W3C validator |