Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biadan 817 pm4.78 933 xor 1013 cases2 1046 nic-ax 1675 nfnbi 1857 2sb6 2089 2sb5 2272 dfsb7 2276 2sb5rf 2471 2sb6rf 2472 eu6lem 2572 eu6 2573 2mo2 2648 2eu7 2658 2eu8 2659 euae 2660 r2exlem 3137 r3al 3190 risset 3218 ralcom4 3266 rexcom4 3268 moelOLD 3375 ralxpxfr2d 3589 reuind 3703 undif3 4242 unab 4250 inab 4251 n0el 4313 inssdif0 4321 ab0 4326 ssundif 4437 ralf0OLD 4467 raldifsnb 4748 pwtp 4852 uniprOLD 4876 uni0b 4886 iinuni 5050 reusv2lem4 5349 pwtr 5402 opthprc 5687 xpiundir 5694 xpsspw 5756 relun 5758 inopab 5776 difopab 5777 difopabOLD 5778 ralxpf 5793 dmiun 5860 elidinxp 5988 iresn0n0 5998 inisegn0 6041 rniun 6091 imaco 6194 rnco 6195 mptfnf 6624 fnopabg 6626 dff1o2 6777 brprcneu 6820 brprcneuALT 6821 idref 7079 imaiun 7179 sorpss 7648 opabex3d 7881 opabex3rd 7882 opabex3 7883 ovmptss 8006 fnsuppres 8082 sbthfilem 9071 ttrcltr 9578 rankc1 9732 aceq1 9979 dfac10 9999 fin41 10306 axgroth6 10690 genpass 10871 infm3 12040 prime 12507 elixx3g 13198 elfz2 13352 elfzuzb 13356 rpnnen2lem12 16034 divalgb 16213 1nprm 16482 maxprmfct 16512 vdwmc 16777 imasleval 17350 issubm 18540 issubg3 18870 efgrelexlemb 19452 ist1-2 22604 unisngl 22784 elflim2 23221 isfcls 23266 istlm 23442 isnlm 23945 ishl2 24640 ovoliunlem1 24772 erclwwlkref 28672 erclwwlknref 28721 0wlk 28768 h1de2ctlem 30205 nonbooli 30301 5oalem7 30310 ho01i 30478 rnbra 30757 cvnbtwn3 30938 chrelat2i 31015 difrab2 31132 uniinn0 31175 disjex 31216 maprnin 31351 ordtconnlem1 32170 esum2dlem 32356 eulerpartgbij 32637 eulerpartlemr 32639 eulerpartlemn 32646 ballotlem2 32753 bnj976 33054 bnj1185 33070 bnj543 33170 bnj571 33183 bnj611 33195 bnj916 33210 bnj1000 33218 bnj1040 33249 iscvm 33518 untuni 33947 dfso3 33959 ralxp3f 33973 dffr5 34010 elima4 34033 frpoins3xpg 34069 frpoins3xp3g 34070 poxp2 34072 brtxpsd3 34335 brbigcup 34337 fixcnv 34347 ellimits 34349 elfuns 34354 brimage 34365 brcart 34371 brimg 34376 brapply 34377 brcup 34378 brcap 34379 dfrdg4 34390 dfint3 34391 ellines 34591 elicc3 34643 bj-snsetex 35288 bj-snglc 35294 bj-projun 35319 wl-2xor 35808 wl-cases2-dnf 35825 poimirlem27 35958 mblfinlem2 35969 iscrngo2 36309 n0elqs 36641 inxpxrn 36711 eqvrelcoss3 36934 prtlem70 37173 prtlem100 37175 prtlem15 37191 prter2 37197 lcvnbtwn3 37344 ishlat1 37668 ishlat2 37669 hlrelat2 37720 islpln5 37852 islvol5 37896 pclclN 38208 cdleme0nex 38607 isdomn5 40477 aaitgo 41299 isdomn3 41341 imaiun1 41630 relexp0eq 41680 ntrk1k3eqk13 42031 2sbc6g 42404 2sbc5g 42405 2reu7 45019 2reu8 45020 mosssn2 46578 iscnrm3lem3 46645 alsconv 46910 |
Copyright terms: Public domain | W3C validator |