![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biadan 818 pm4.78 934 xor 1014 cases2 1047 nic-ax 1676 nfnbi 1858 2sb6 2090 2sb5 2272 dfsb7 2276 2sb5rf 2472 2sb6rf 2473 eu6lem 2568 eu6 2569 2mo2 2644 2eu7 2654 2eu8 2655 euae 2656 r2exlem 3144 r3al 3197 risset 3231 ralcom4 3284 rexcom4 3286 moelOLD 3402 rabbi 3463 ralxpxfr2d 3635 reuind 3750 undif3 4291 unab 4299 inab 4300 n0el 4362 inssdif0 4370 ssundif 4488 ralf0OLD 4518 raldifsnb 4800 pwtp 4904 uniprOLD 4928 uni0b 4938 iinuni 5102 reusv2lem4 5400 pwtr 5453 opthprc 5741 xpiundir 5748 xpsspw 5810 relun 5812 inopab 5830 difopab 5831 difopabOLD 5832 ralxpf 5847 dmiun 5914 elidinxp 6044 iresn0n0 6054 inisegn0 6098 rniun 6148 imaco 6251 rnco 6252 mptfnf 6686 fnopabg 6688 dff1o2 6839 brprcneu 6882 brprcneuALT 6883 idref 7144 imaiun 7244 sorpss 7718 opabex3d 7952 opabex3rd 7953 opabex3 7954 ovmptss 8079 frpoins3xpg 8126 frpoins3xp3g 8127 poxp2 8129 poxp3 8136 fnsuppres 8176 sbthfilem 9201 ttrcltr 9711 rankc1 9865 aceq1 10112 dfac10 10132 fin41 10439 axgroth6 10823 genpass 11004 infm3 12173 prime 12643 elixx3g 13337 elfz2 13491 elfzuzb 13495 rpnnen2lem12 16168 divalgb 16347 1nprm 16616 maxprmfct 16646 vdwmc 16911 imasleval 17487 issubm 18684 issubg3 19024 efgrelexlemb 19618 isdomn5 20917 ist1-2 22851 unisngl 23031 elflim2 23468 isfcls 23513 istlm 23689 isnlm 24192 ishl2 24887 ovoliunlem1 25019 erclwwlkref 29273 erclwwlknref 29322 0wlk 29369 h1de2ctlem 30808 nonbooli 30904 5oalem7 30913 ho01i 31081 rnbra 31360 cvnbtwn3 31541 chrelat2i 31618 difrab2 31738 uniinn0 31782 disjex 31823 maprnin 31956 ordtconnlem1 32904 esum2dlem 33090 eulerpartgbij 33371 eulerpartlemr 33373 eulerpartlemn 33380 ballotlem2 33487 bnj976 33788 bnj1185 33804 bnj543 33904 bnj571 33917 bnj611 33929 bnj916 33944 bnj1000 33952 bnj1040 33983 iscvm 34250 untuni 34678 dfso3 34689 dffr5 34724 elima4 34747 brtxpsd3 34868 brbigcup 34870 fixcnv 34880 ellimits 34882 elfuns 34887 brimage 34898 brcart 34904 brimg 34909 brapply 34910 brcup 34911 brcap 34912 dfrdg4 34923 dfint3 34924 ellines 35124 elicc3 35202 bj-snsetex 35844 bj-snglc 35850 bj-projun 35875 wl-2xor 36364 wl-cases2-dnf 36381 poimirlem27 36515 mblfinlem2 36526 iscrngo2 36865 n0elqs 37195 inxpxrn 37265 eqvrelcoss3 37488 prtlem70 37727 prtlem100 37729 prtlem15 37745 prter2 37751 lcvnbtwn3 37898 ishlat1 38222 ishlat2 38223 hlrelat2 38274 islpln5 38406 islvol5 38450 pclclN 38762 cdleme0nex 39161 aaitgo 41904 isdomn3 41946 onmaxnelsup 41972 onsupnmax 41977 nnoeomeqom 42062 imaiun1 42402 relexp0eq 42452 ntrk1k3eqk13 42801 2sbc6g 43174 2sbc5g 43175 2reu7 45819 2reu8 45820 mosssn2 47501 iscnrm3lem3 47568 alsconv 47837 |
Copyright terms: Public domain | W3C validator |