| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biadan 818 pm4.78 934 xor 1016 cases2 1047 4anpull2 1362 nic-ax 1674 nfnbi 1856 2sb6 2089 2sb5 2280 dfsb7 2281 2sb5rf 2472 2sb6rf 2473 eu6lem 2568 eu6 2569 2mo2 2642 2eu7 2653 2eu8 2654 euae 2655 r2exlem 3121 r3al 3170 risset 3207 ralcom4 3258 rexcom4 3259 rabbi 3425 ralxpxfr2d 3601 reuind 3712 dfss2 3920 undif3 4250 unab 4258 inab 4259 n0el 4314 inssdif0 4324 ssundif 4438 raldifsnb 4748 pwtp 4854 uni0b 4885 iinuni 5046 inuni 5288 reusv2lem4 5339 pwtr 5393 opthprc 5680 xpiundir 5688 xpsspw 5749 relun 5751 inopab 5769 difopab 5770 ralxpf 5786 dmiun 5853 elidinxp 5993 iresn0n0 6003 inisegn0 6047 rniun 6094 imaco 6198 rnco 6199 rncoOLD 6200 mptfnf 6616 fnopabg 6618 dff1o2 6768 brprcneu 6812 brprcneuALT 6813 idref 7079 imaiun 7179 sorpss 7661 opabex3d 7897 opabex3rd 7898 opabex3 7899 ovmptss 8023 frpoins3xpg 8070 frpoins3xp3g 8071 poxp2 8073 poxp3 8080 fnsuppres 8121 sbthfilem 9107 ttrcltr 9606 rankc1 9763 aceq1 10008 dfac10 10029 fin41 10335 axgroth6 10719 genpass 10900 infm3 12081 prime 12554 elixx3g 13258 elfz2 13414 elfzuzb 13418 rpnnen2lem12 16134 divalgb 16315 1nprm 16590 maxprmfct 16620 vdwmc 16890 imasleval 17445 issubm 18711 issubg3 19057 efgrelexlemb 19663 isdomn5 20626 isdomn2 20627 isdomn3 20631 ist1-2 23263 unisngl 23443 elflim2 23880 isfcls 23925 istlm 24101 isnlm 24591 ishl2 25298 ovoliunlem1 25431 eln0s 28288 zaddscl 28319 readdscl 28402 remulscl 28405 erclwwlkref 29998 erclwwlknref 30047 0wlk 30094 h1de2ctlem 31533 nonbooli 31629 5oalem7 31638 ho01i 31806 rnbra 32085 cvnbtwn3 32266 chrelat2i 32343 difrab2 32475 uniinn0 32528 disjex 32570 maprnin 32712 ordtconnlem1 33935 esum2dlem 34103 eulerpartgbij 34383 eulerpartlemr 34385 eulerpartlemn 34392 ballotlem2 34500 bnj976 34787 bnj1185 34803 bnj543 34903 bnj571 34916 bnj611 34928 bnj916 34943 bnj1000 34951 bnj1040 34982 iscvm 35301 untuni 35751 dfso3 35762 dffr5 35796 elima4 35818 brtxpsd3 35936 brbigcup 35938 fixcnv 35948 ellimits 35950 elfuns 35955 brimage 35966 brcart 35972 brimg 35977 brapply 35978 brcup 35979 brcap 35980 dfrdg4 35991 dfint3 35992 ellines 36192 elicc3 36357 bj-snsetex 37003 bj-snglc 37009 bj-projun 37034 wl-2xor 37523 wl-cases2-dnf 37552 poimirlem27 37693 mblfinlem2 37704 iscrngo2 38043 n0elqs 38366 inxpxrn 38433 eqvrelcoss3 38661 prtlem70 38902 prtlem100 38904 prtlem15 38920 prter2 38926 lcvnbtwn3 39073 ishlat1 39397 ishlat2 39398 hlrelat2 39448 islpln5 39580 islvol5 39624 pclclN 39936 cdleme0nex 40335 eu6w 42715 aaitgo 43201 onmaxnelsup 43262 onsupnmax 43267 nnoeomeqom 43351 imaiun1 43690 relexp0eq 43740 ntrk1k3eqk13 44089 2sbc6g 44454 2sbc5g 44455 2reu7 47148 2reu8 47149 mosssn2 48854 iinxp 48868 ixpv 48927 alsconv 49828 |
| Copyright terms: Public domain | W3C validator |