![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: biadan 819 pm4.78 934 xor 1016 cases2 1047 nic-ax 1669 nfnbi 1851 2sb6 2083 2sb5 2275 dfsb7 2277 2sb5rf 2474 2sb6rf 2475 eu6lem 2570 eu6 2571 2mo2 2644 2eu7 2655 2eu8 2656 euae 2657 r2exlem 3140 r3al 3194 risset 3230 ralcom4 3283 rexcom4 3285 moelOLD 3402 rabbi 3464 ralxpxfr2d 3645 reuind 3761 dfss2 3980 undif3 4305 unab 4313 inab 4314 n0el 4369 inssdif0 4379 ssundif 4493 raldifsnb 4800 pwtp 4906 uni0b 4937 iinuni 5102 inuni 5355 reusv2lem4 5406 pwtr 5462 opthprc 5752 xpiundir 5759 xpsspw 5821 relun 5823 inopab 5841 difopab 5842 difopabOLD 5843 ralxpf 5859 dmiun 5926 elidinxp 6063 iresn0n0 6073 inisegn0 6118 rniun 6169 imaco 6272 rnco 6273 mptfnf 6703 fnopabg 6705 dff1o2 6853 brprcneu 6896 brprcneuALT 6897 idref 7165 imaiun 7264 sorpss 7746 opabex3d 7988 opabex3rd 7989 opabex3 7990 ovmptss 8116 frpoins3xpg 8163 frpoins3xp3g 8164 poxp2 8166 poxp3 8173 fnsuppres 8214 sbthfilem 9235 ttrcltr 9753 rankc1 9907 aceq1 10154 dfac10 10175 fin41 10481 axgroth6 10865 genpass 11046 infm3 12224 prime 12696 elixx3g 13396 elfz2 13550 elfzuzb 13554 rpnnen2lem12 16257 divalgb 16437 1nprm 16712 maxprmfct 16742 vdwmc 17011 imasleval 17587 issubm 18828 issubg3 19174 efgrelexlemb 19782 isdomn5 20726 isdomn2 20727 isdomn3 20731 ist1-2 23370 unisngl 23550 elflim2 23987 isfcls 24032 istlm 24208 isnlm 24711 ishl2 25417 ovoliunlem1 25550 eln0s 28372 zaddscl 28394 readdscl 28445 remulscl 28448 erclwwlkref 30048 erclwwlknref 30097 0wlk 30144 h1de2ctlem 31583 nonbooli 31679 5oalem7 31688 ho01i 31856 rnbra 32135 cvnbtwn3 32316 chrelat2i 32393 difrab2 32525 uniinn0 32570 disjex 32611 maprnin 32748 ordtconnlem1 33884 esum2dlem 34072 eulerpartgbij 34353 eulerpartlemr 34355 eulerpartlemn 34362 ballotlem2 34469 bnj976 34769 bnj1185 34785 bnj543 34885 bnj571 34898 bnj611 34910 bnj916 34925 bnj1000 34933 bnj1040 34964 iscvm 35243 untuni 35688 dfso3 35699 dffr5 35733 elima4 35756 brtxpsd3 35877 brbigcup 35879 fixcnv 35889 ellimits 35891 elfuns 35896 brimage 35907 brcart 35913 brimg 35918 brapply 35919 brcup 35920 brcap 35921 dfrdg4 35932 dfint3 35933 ellines 36133 elicc3 36299 bj-snsetex 36945 bj-snglc 36951 bj-projun 36976 wl-2xor 37465 wl-cases2-dnf 37492 poimirlem27 37633 mblfinlem2 37644 iscrngo2 37983 n0elqs 38307 inxpxrn 38376 eqvrelcoss3 38599 prtlem70 38838 prtlem100 38840 prtlem15 38856 prter2 38862 lcvnbtwn3 39009 ishlat1 39333 ishlat2 39334 hlrelat2 39385 islpln5 39517 islvol5 39561 pclclN 39873 cdleme0nex 40272 eu6w 42662 aaitgo 43150 onmaxnelsup 43211 onsupnmax 43216 nnoeomeqom 43301 imaiun1 43640 relexp0eq 43690 ntrk1k3eqk13 44039 2sbc6g 44410 2sbc5g 44411 2reu7 47060 2reu8 47061 mosssn2 48664 iscnrm3lem3 48731 alsconv 49020 |
Copyright terms: Public domain | W3C validator |