![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: biadan 818 pm4.78 933 xor 1015 cases2 1048 nic-ax 1671 nfnbi 1853 2sb6 2086 2sb5 2281 dfsb7 2283 2sb5rf 2480 2sb6rf 2481 eu6lem 2576 eu6 2577 2mo2 2650 2eu7 2661 2eu8 2662 euae 2663 r2exlem 3149 r3al 3203 risset 3239 ralcom4 3292 rexcom4 3294 moelOLD 3413 rabbi 3475 ralxpxfr2d 3659 reuind 3775 dfss2 3994 undif3 4319 unab 4327 inab 4328 n0el 4387 inssdif0 4397 ssundif 4511 raldifsnb 4821 pwtp 4926 uni0b 4957 iinuni 5121 inuni 5368 reusv2lem4 5419 pwtr 5472 opthprc 5764 xpiundir 5771 xpsspw 5833 relun 5835 inopab 5853 difopab 5854 difopabOLD 5855 ralxpf 5871 dmiun 5938 elidinxp 6073 iresn0n0 6083 inisegn0 6128 rniun 6179 imaco 6282 rnco 6283 mptfnf 6715 fnopabg 6717 dff1o2 6867 brprcneu 6910 brprcneuALT 6911 idref 7180 imaiun 7282 sorpss 7763 opabex3d 8006 opabex3rd 8007 opabex3 8008 ovmptss 8134 frpoins3xpg 8181 frpoins3xp3g 8182 poxp2 8184 poxp3 8191 fnsuppres 8232 sbthfilem 9264 ttrcltr 9785 rankc1 9939 aceq1 10186 dfac10 10207 fin41 10513 axgroth6 10897 genpass 11078 infm3 12254 prime 12724 elixx3g 13420 elfz2 13574 elfzuzb 13578 rpnnen2lem12 16273 divalgb 16452 1nprm 16726 maxprmfct 16756 vdwmc 17025 imasleval 17601 issubm 18838 issubg3 19184 efgrelexlemb 19792 isdomn5 20732 isdomn2 20733 isdomn3 20737 ist1-2 23376 unisngl 23556 elflim2 23993 isfcls 24038 istlm 24214 isnlm 24717 ishl2 25423 ovoliunlem1 25556 eln0s 28376 zaddscl 28398 readdscl 28449 remulscl 28452 erclwwlkref 30052 erclwwlknref 30101 0wlk 30148 h1de2ctlem 31587 nonbooli 31683 5oalem7 31692 ho01i 31860 rnbra 32139 cvnbtwn3 32320 chrelat2i 32397 difrab2 32526 uniinn0 32573 disjex 32614 maprnin 32745 ordtconnlem1 33870 esum2dlem 34056 eulerpartgbij 34337 eulerpartlemr 34339 eulerpartlemn 34346 ballotlem2 34453 bnj976 34753 bnj1185 34769 bnj543 34869 bnj571 34882 bnj611 34894 bnj916 34909 bnj1000 34917 bnj1040 34948 iscvm 35227 untuni 35671 dfso3 35682 dffr5 35716 elima4 35739 brtxpsd3 35860 brbigcup 35862 fixcnv 35872 ellimits 35874 elfuns 35879 brimage 35890 brcart 35896 brimg 35901 brapply 35902 brcup 35903 brcap 35904 dfrdg4 35915 dfint3 35916 ellines 36116 elicc3 36283 bj-snsetex 36929 bj-snglc 36935 bj-projun 36960 wl-2xor 37449 wl-cases2-dnf 37466 poimirlem27 37607 mblfinlem2 37618 iscrngo2 37957 n0elqs 38282 inxpxrn 38351 eqvrelcoss3 38574 prtlem70 38813 prtlem100 38815 prtlem15 38831 prter2 38837 lcvnbtwn3 38984 ishlat1 39308 ishlat2 39309 hlrelat2 39360 islpln5 39492 islvol5 39536 pclclN 39848 cdleme0nex 40247 eu6w 42631 aaitgo 43119 onmaxnelsup 43184 onsupnmax 43189 nnoeomeqom 43274 imaiun1 43613 relexp0eq 43663 ntrk1k3eqk13 44012 2sbc6g 44384 2sbc5g 44385 2reu7 47026 2reu8 47027 mosssn2 48548 iscnrm3lem3 48615 alsconv 48884 |
Copyright terms: Public domain | W3C validator |