| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biadan 818 pm4.78 934 xor 1016 cases2 1047 4anpull2 1362 nic-ax 1673 nfnbi 1855 2sb6 2087 2sb5 2278 dfsb7 2279 2sb5rf 2470 2sb6rf 2471 eu6lem 2566 eu6 2567 2mo2 2640 2eu7 2651 2eu8 2652 euae 2653 r2exlem 3122 r3al 3175 risset 3212 ralcom4 3263 rexcom4 3264 rabbi 3436 ralxpxfr2d 3612 reuind 3724 dfss2 3932 undif3 4263 unab 4271 inab 4272 n0el 4327 inssdif0 4337 ssundif 4451 raldifsnb 4760 pwtp 4866 uni0b 4897 iinuni 5062 inuni 5305 reusv2lem4 5356 pwtr 5412 opthprc 5702 xpiundir 5710 xpsspw 5772 relun 5774 inopab 5792 difopab 5793 difopabOLD 5794 ralxpf 5810 dmiun 5877 elidinxp 6015 iresn0n0 6025 inisegn0 6069 rniun 6120 imaco 6224 rnco 6225 mptfnf 6653 fnopabg 6655 dff1o2 6805 brprcneu 6848 brprcneuALT 6849 idref 7118 imaiun 7219 sorpss 7704 opabex3d 7944 opabex3rd 7945 opabex3 7946 ovmptss 8072 frpoins3xpg 8119 frpoins3xp3g 8120 poxp2 8122 poxp3 8129 fnsuppres 8170 sbthfilem 9162 ttrcltr 9669 rankc1 9823 aceq1 10070 dfac10 10091 fin41 10397 axgroth6 10781 genpass 10962 infm3 12142 prime 12615 elixx3g 13319 elfz2 13475 elfzuzb 13479 rpnnen2lem12 16193 divalgb 16374 1nprm 16649 maxprmfct 16679 vdwmc 16949 imasleval 17504 issubm 18730 issubg3 19076 efgrelexlemb 19680 isdomn5 20619 isdomn2 20620 isdomn3 20624 ist1-2 23234 unisngl 23414 elflim2 23851 isfcls 23896 istlm 24072 isnlm 24563 ishl2 25270 ovoliunlem1 25403 eln0s 28251 zaddscl 28282 readdscl 28350 remulscl 28353 erclwwlkref 29949 erclwwlknref 29998 0wlk 30045 h1de2ctlem 31484 nonbooli 31580 5oalem7 31589 ho01i 31757 rnbra 32036 cvnbtwn3 32217 chrelat2i 32294 difrab2 32427 uniinn0 32479 disjex 32521 maprnin 32654 ordtconnlem1 33914 esum2dlem 34082 eulerpartgbij 34363 eulerpartlemr 34365 eulerpartlemn 34372 ballotlem2 34480 bnj976 34767 bnj1185 34783 bnj543 34883 bnj571 34896 bnj611 34908 bnj916 34923 bnj1000 34931 bnj1040 34962 iscvm 35246 untuni 35696 dfso3 35707 dffr5 35741 elima4 35763 brtxpsd3 35884 brbigcup 35886 fixcnv 35896 ellimits 35898 elfuns 35903 brimage 35914 brcart 35920 brimg 35925 brapply 35926 brcup 35927 brcap 35928 dfrdg4 35939 dfint3 35940 ellines 36140 elicc3 36305 bj-snsetex 36951 bj-snglc 36957 bj-projun 36982 wl-2xor 37471 wl-cases2-dnf 37500 poimirlem27 37641 mblfinlem2 37652 iscrngo2 37991 n0elqs 38314 inxpxrn 38381 eqvrelcoss3 38609 prtlem70 38850 prtlem100 38852 prtlem15 38868 prter2 38874 lcvnbtwn3 39021 ishlat1 39345 ishlat2 39346 hlrelat2 39397 islpln5 39529 islvol5 39573 pclclN 39885 cdleme0nex 40284 eu6w 42664 aaitgo 43151 onmaxnelsup 43212 onsupnmax 43217 nnoeomeqom 43301 imaiun1 43640 relexp0eq 43690 ntrk1k3eqk13 44039 2sbc6g 44404 2sbc5g 44405 2reu7 47112 2reu8 47113 mosssn2 48805 iinxp 48819 ixpv 48878 alsconv 49779 |
| Copyright terms: Public domain | W3C validator |