Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 275 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biadan 816 pm4.78 932 xor 1012 cases2 1045 nic-ax 1676 nfnbi 1858 2sb6 2090 2sb5 2273 dfsb7 2277 2sb5rf 2473 2sb6rf 2474 eu6lem 2574 eu6 2575 2mo2 2650 2eu7 2660 2eu8 2661 euae 2662 r3al 3120 ralcom4 3165 risset 3195 r2exlem 3232 rexcom4 3234 moelOLD 3360 ralxpxfr2d 3577 reuind 3689 undif3 4225 unab 4233 inab 4234 n0el 4296 inssdif0 4304 ab0 4309 ssundif 4419 ralf0OLD 4449 raldifsnb 4730 pwtp 4835 uniprOLD 4859 uni0b 4868 iinuni 5028 reusv2lem4 5325 pwtr 5369 opthprc 5652 xpiundir 5659 xpsspw 5721 relun 5723 inopab 5741 difopab 5742 difopabOLD 5743 ralxpf 5758 dmiun 5825 elidinxp 5954 iresn0n0 5966 inisegn0 6009 rniun 6056 imaco 6159 rnco 6160 mptfnf 6577 fnopabg 6579 dff1o2 6730 brprcneu 6773 brprcneuALT 6774 idref 7027 imaiun 7127 sorpss 7590 opabex3d 7817 opabex3rd 7818 opabex3 7819 ovmptss 7942 fnsuppres 8016 sbthfilem 8993 ttrcltr 9483 rankc1 9637 aceq1 9882 dfac10 9902 fin41 10209 axgroth6 10593 genpass 10774 infm3 11943 prime 12410 elixx3g 13101 elfz2 13255 elfzuzb 13259 rpnnen2lem12 15943 divalgb 16122 1nprm 16393 maxprmfct 16423 vdwmc 16688 imasleval 17261 issubm 18451 issubg3 18782 efgrelexlemb 19365 ist1-2 22507 unisngl 22687 elflim2 23124 isfcls 23169 istlm 23345 isnlm 23848 ishl2 24543 ovoliunlem1 24675 erclwwlkref 28393 erclwwlknref 28442 0wlk 28489 h1de2ctlem 29926 nonbooli 30022 5oalem7 30031 ho01i 30199 rnbra 30478 cvnbtwn3 30659 chrelat2i 30736 nelbOLDOLD 30826 difrab2 30854 uniinn0 30899 disjex 30940 maprnin 31075 ordtconnlem1 31883 esum2dlem 32069 eulerpartgbij 32348 eulerpartlemr 32350 eulerpartlemn 32357 ballotlem2 32464 bnj976 32766 bnj1185 32782 bnj543 32882 bnj571 32895 bnj611 32907 bnj916 32922 bnj1000 32930 bnj1040 32961 iscvm 33230 untuni 33659 dfso3 33673 ralxp3f 33694 dffr5 33730 elima4 33759 frpoins3xpg 33796 frpoins3xp3g 33797 poxp2 33799 brtxpsd3 34207 brbigcup 34209 fixcnv 34219 ellimits 34221 elfuns 34226 brimage 34237 brcart 34243 brimg 34248 brapply 34249 brcup 34250 brcap 34251 dfrdg4 34262 dfint3 34263 ellines 34463 elicc3 34515 bj-snsetex 35162 bj-snglc 35168 bj-projun 35193 wl-2xor 35663 wl-cases2-dnf 35680 poimirlem27 35813 mblfinlem2 35824 iscrngo2 36164 n0elqs 36468 inxpxrn 36528 eqvrelcoss3 36738 prtlem70 36878 prtlem100 36880 prtlem15 36896 prter2 36902 lcvnbtwn3 37049 ishlat1 37373 ishlat2 37374 hlrelat2 37424 islpln5 37556 islvol5 37600 pclclN 37912 cdleme0nex 38311 isdomn5 40178 aaitgo 40994 isdomn3 41036 imaiun1 41266 relexp0eq 41316 ntrk1k3eqk13 41667 2sbc6g 42040 2sbc5g 42041 2reu7 44614 2reu8 44615 mosssn2 46173 iscnrm3lem3 46240 alsconv 46505 |
Copyright terms: Public domain | W3C validator |