| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biadan 818 pm4.78 934 xor 1016 cases2 1047 4anpull2 1362 nic-ax 1674 nfnbi 1856 2sb6 2091 2sb5 2282 dfsb7 2283 2sb5rf 2474 2sb6rf 2475 eu6lem 2570 eu6 2571 2mo2 2644 2eu7 2655 2eu8 2656 euae 2657 r2exlem 3122 r3al 3171 risset 3208 ralcom4 3259 rexcom4 3260 rabbi 3426 ralxpxfr2d 3597 reuind 3708 dfss2 3916 undif3 4249 unab 4257 inab 4258 n0el 4313 inssdif0 4323 ssundif 4437 ralf0 4447 raldifsnb 4749 pwtp 4855 uni0b 4886 iinuni 5050 inuni 5292 reusv2lem4 5343 pwtr 5397 opthprc 5685 xpiundir 5693 xpsspw 5755 relun 5757 inopab 5775 difopab 5776 ralxpf 5792 dmiun 5859 elidinxp 5999 iresn0n0 6009 inisegn0 6053 rniun 6101 imaco 6205 rnco 6206 rncoOLD 6207 mptfnf 6623 fnopabg 6625 dff1o2 6775 brprcneu 6820 brprcneuALT 6821 idref 7087 imaiun 7187 sorpss 7669 opabex3d 7905 opabex3rd 7906 opabex3 7907 ovmptss 8031 frpoins3xpg 8078 frpoins3xp3g 8079 poxp2 8081 poxp3 8088 fnsuppres 8129 sbthfilem 9116 ttrcltr 9615 rankc1 9772 aceq1 10017 dfac10 10038 fin41 10344 axgroth6 10728 genpass 10909 infm3 12090 prime 12562 elixx3g 13262 elfz2 13418 elfzuzb 13422 rpnnen2lem12 16138 divalgb 16319 1nprm 16594 maxprmfct 16624 vdwmc 16894 imasleval 17449 issubm 18715 issubg3 19061 efgrelexlemb 19666 isdomn5 20629 isdomn2 20630 isdomn3 20634 ist1-2 23265 unisngl 23445 elflim2 23882 isfcls 23927 istlm 24103 isnlm 24593 ishl2 25300 ovoliunlem1 25433 eln0s 28290 zaddscl 28321 readdscl 28404 remulscl 28407 erclwwlkref 30004 erclwwlknref 30053 0wlk 30100 h1de2ctlem 31539 nonbooli 31635 5oalem7 31644 ho01i 31812 rnbra 32091 cvnbtwn3 32272 chrelat2i 32349 difrab2 32481 uniinn0 32534 disjex 32576 maprnin 32720 ordtconnlem1 33960 esum2dlem 34128 eulerpartgbij 34408 eulerpartlemr 34410 eulerpartlemn 34417 ballotlem2 34525 bnj976 34812 bnj1185 34828 bnj543 34928 bnj571 34941 bnj611 34953 bnj916 34968 bnj1000 34976 bnj1040 35007 iscvm 35326 untuni 35776 dfso3 35787 dffr5 35821 elima4 35843 brtxpsd3 35961 brbigcup 35963 fixcnv 35973 ellimits 35975 elfuns 35980 brimage 35991 brcart 35997 brimg 36002 brapply 36003 brcup 36004 brcap 36005 dfrdg4 36018 dfint3 36019 ellines 36219 elicc3 36384 bj-snsetex 37030 bj-snglc 37036 bj-projun 37061 wl-2xor 37550 wl-cases2-dnf 37579 poimirlem27 37710 mblfinlem2 37721 iscrngo2 38060 n0elqs 38387 inxpxrn 38465 eqvrelcoss3 38737 prtlem70 38979 prtlem100 38981 prtlem15 38997 prter2 39003 lcvnbtwn3 39150 ishlat1 39474 ishlat2 39475 hlrelat2 39525 islpln5 39657 islvol5 39701 pclclN 40013 cdleme0nex 40412 eu6w 42797 aaitgo 43282 onmaxnelsup 43343 onsupnmax 43348 nnoeomeqom 43432 imaiun1 43771 relexp0eq 43821 ntrk1k3eqk13 44170 2sbc6g 44535 2sbc5g 44536 2reu7 47238 2reu8 47239 mosssn2 48944 iinxp 48958 ixpv 49017 alsconv 49918 |
| Copyright terms: Public domain | W3C validator |