| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biadan 818 pm4.78 934 xor 1016 cases2 1047 4anpull2 1362 nic-ax 1673 nfnbi 1855 2sb6 2086 2sb5 2278 dfsb7 2279 2sb5rf 2476 2sb6rf 2477 eu6lem 2572 eu6 2573 2mo2 2646 2eu7 2657 2eu8 2658 euae 2659 r2exlem 3129 r3al 3182 risset 3217 ralcom4 3268 rexcom4 3269 moelOLD 3384 rabbi 3446 ralxpxfr2d 3625 reuind 3736 dfss2 3944 undif3 4275 unab 4283 inab 4284 n0el 4339 inssdif0 4349 ssundif 4463 raldifsnb 4772 pwtp 4878 uni0b 4909 iinuni 5074 inuni 5320 reusv2lem4 5371 pwtr 5427 opthprc 5718 xpiundir 5726 xpsspw 5788 relun 5790 inopab 5808 difopab 5809 difopabOLD 5810 ralxpf 5826 dmiun 5893 elidinxp 6031 iresn0n0 6041 inisegn0 6085 rniun 6136 imaco 6240 rnco 6241 mptfnf 6672 fnopabg 6674 dff1o2 6822 brprcneu 6865 brprcneuALT 6866 idref 7135 imaiun 7236 sorpss 7720 opabex3d 7962 opabex3rd 7963 opabex3 7964 ovmptss 8090 frpoins3xpg 8137 frpoins3xp3g 8138 poxp2 8140 poxp3 8147 fnsuppres 8188 sbthfilem 9210 ttrcltr 9728 rankc1 9882 aceq1 10129 dfac10 10150 fin41 10456 axgroth6 10840 genpass 11021 infm3 12199 prime 12672 elixx3g 13373 elfz2 13529 elfzuzb 13533 rpnnen2lem12 16241 divalgb 16421 1nprm 16696 maxprmfct 16726 vdwmc 16996 imasleval 17553 issubm 18779 issubg3 19125 efgrelexlemb 19729 isdomn5 20668 isdomn2 20669 isdomn3 20673 ist1-2 23283 unisngl 23463 elflim2 23900 isfcls 23945 istlm 24121 isnlm 24612 ishl2 25320 ovoliunlem1 25453 eln0s 28275 zaddscl 28297 readdscl 28348 remulscl 28351 erclwwlkref 29947 erclwwlknref 29996 0wlk 30043 h1de2ctlem 31482 nonbooli 31578 5oalem7 31587 ho01i 31755 rnbra 32034 cvnbtwn3 32215 chrelat2i 32292 difrab2 32425 uniinn0 32477 disjex 32519 maprnin 32654 ordtconnlem1 33901 esum2dlem 34069 eulerpartgbij 34350 eulerpartlemr 34352 eulerpartlemn 34359 ballotlem2 34467 bnj976 34754 bnj1185 34770 bnj543 34870 bnj571 34883 bnj611 34895 bnj916 34910 bnj1000 34918 bnj1040 34949 iscvm 35227 untuni 35672 dfso3 35683 dffr5 35717 elima4 35739 brtxpsd3 35860 brbigcup 35862 fixcnv 35872 ellimits 35874 elfuns 35879 brimage 35890 brcart 35896 brimg 35901 brapply 35902 brcup 35903 brcap 35904 dfrdg4 35915 dfint3 35916 ellines 36116 elicc3 36281 bj-snsetex 36927 bj-snglc 36933 bj-projun 36958 wl-2xor 37447 wl-cases2-dnf 37476 poimirlem27 37617 mblfinlem2 37628 iscrngo2 37967 n0elqs 38290 inxpxrn 38359 eqvrelcoss3 38582 prtlem70 38821 prtlem100 38823 prtlem15 38839 prter2 38845 lcvnbtwn3 38992 ishlat1 39316 ishlat2 39317 hlrelat2 39368 islpln5 39500 islvol5 39544 pclclN 39856 cdleme0nex 40255 eu6w 42646 aaitgo 43133 onmaxnelsup 43194 onsupnmax 43199 nnoeomeqom 43283 imaiun1 43622 relexp0eq 43672 ntrk1k3eqk13 44021 2sbc6g 44387 2sbc5g 44388 2reu7 47088 2reu8 47089 mosssn2 48743 iinxp 48757 ixpv 48813 alsconv 49602 |
| Copyright terms: Public domain | W3C validator |