| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biadan 818 pm4.78 934 xor 1016 cases2 1047 4anpull2 1362 nic-ax 1673 nfnbi 1855 2sb6 2087 2sb5 2278 dfsb7 2279 2sb5rf 2470 2sb6rf 2471 eu6lem 2566 eu6 2567 2mo2 2640 2eu7 2651 2eu8 2652 euae 2653 r2exlem 3118 r3al 3167 risset 3204 ralcom4 3255 rexcom4 3256 rabbi 3427 ralxpxfr2d 3603 reuind 3715 dfss2 3923 undif3 4253 unab 4261 inab 4262 n0el 4317 inssdif0 4327 ssundif 4441 raldifsnb 4750 pwtp 4856 uni0b 4887 iinuni 5050 inuni 5292 reusv2lem4 5343 pwtr 5399 opthprc 5687 xpiundir 5695 xpsspw 5756 relun 5758 inopab 5776 difopab 5777 ralxpf 5793 dmiun 5860 elidinxp 5999 iresn0n0 6009 inisegn0 6053 rniun 6100 imaco 6204 rnco 6205 mptfnf 6621 fnopabg 6623 dff1o2 6773 brprcneu 6816 brprcneuALT 6817 idref 7084 imaiun 7185 sorpss 7668 opabex3d 7907 opabex3rd 7908 opabex3 7909 ovmptss 8033 frpoins3xpg 8080 frpoins3xp3g 8081 poxp2 8083 poxp3 8090 fnsuppres 8131 sbthfilem 9122 ttrcltr 9631 rankc1 9785 aceq1 10030 dfac10 10051 fin41 10357 axgroth6 10741 genpass 10922 infm3 12102 prime 12575 elixx3g 13279 elfz2 13435 elfzuzb 13439 rpnnen2lem12 16152 divalgb 16333 1nprm 16608 maxprmfct 16638 vdwmc 16908 imasleval 17463 issubm 18695 issubg3 19041 efgrelexlemb 19647 isdomn5 20613 isdomn2 20614 isdomn3 20618 ist1-2 23250 unisngl 23430 elflim2 23867 isfcls 23912 istlm 24088 isnlm 24579 ishl2 25286 ovoliunlem1 25419 eln0s 28274 zaddscl 28305 readdscl 28386 remulscl 28389 erclwwlkref 29982 erclwwlknref 30031 0wlk 30078 h1de2ctlem 31517 nonbooli 31613 5oalem7 31622 ho01i 31790 rnbra 32069 cvnbtwn3 32250 chrelat2i 32327 difrab2 32460 uniinn0 32512 disjex 32554 maprnin 32687 ordtconnlem1 33893 esum2dlem 34061 eulerpartgbij 34342 eulerpartlemr 34344 eulerpartlemn 34351 ballotlem2 34459 bnj976 34746 bnj1185 34762 bnj543 34862 bnj571 34875 bnj611 34887 bnj916 34902 bnj1000 34910 bnj1040 34941 iscvm 35234 untuni 35684 dfso3 35695 dffr5 35729 elima4 35751 brtxpsd3 35872 brbigcup 35874 fixcnv 35884 ellimits 35886 elfuns 35891 brimage 35902 brcart 35908 brimg 35913 brapply 35914 brcup 35915 brcap 35916 dfrdg4 35927 dfint3 35928 ellines 36128 elicc3 36293 bj-snsetex 36939 bj-snglc 36945 bj-projun 36970 wl-2xor 37459 wl-cases2-dnf 37488 poimirlem27 37629 mblfinlem2 37640 iscrngo2 37979 n0elqs 38302 inxpxrn 38369 eqvrelcoss3 38597 prtlem70 38838 prtlem100 38840 prtlem15 38856 prter2 38862 lcvnbtwn3 39009 ishlat1 39333 ishlat2 39334 hlrelat2 39385 islpln5 39517 islvol5 39561 pclclN 39873 cdleme0nex 40272 eu6w 42652 aaitgo 43138 onmaxnelsup 43199 onsupnmax 43204 nnoeomeqom 43288 imaiun1 43627 relexp0eq 43677 ntrk1k3eqk13 44026 2sbc6g 44391 2sbc5g 44392 2reu7 47099 2reu8 47100 mosssn2 48805 iinxp 48819 ixpv 48878 alsconv 49779 |
| Copyright terms: Public domain | W3C validator |