| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
| 3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
| 4 | 2, 3 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜃) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (𝜃 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biadan 818 pm4.78 934 xor 1016 cases2 1047 4anpull2 1362 nic-ax 1673 nfnbi 1855 2sb6 2087 2sb5 2278 dfsb7 2279 2sb5rf 2471 2sb6rf 2472 eu6lem 2567 eu6 2568 2mo2 2641 2eu7 2652 2eu8 2653 euae 2654 r2exlem 3123 r3al 3176 risset 3213 ralcom4 3264 rexcom4 3265 rabbi 3439 ralxpxfr2d 3615 reuind 3727 dfss2 3935 undif3 4266 unab 4274 inab 4275 n0el 4330 inssdif0 4340 ssundif 4454 raldifsnb 4763 pwtp 4869 uni0b 4900 iinuni 5065 inuni 5308 reusv2lem4 5359 pwtr 5415 opthprc 5705 xpiundir 5713 xpsspw 5775 relun 5777 inopab 5795 difopab 5796 difopabOLD 5797 ralxpf 5813 dmiun 5880 elidinxp 6018 iresn0n0 6028 inisegn0 6072 rniun 6123 imaco 6227 rnco 6228 mptfnf 6656 fnopabg 6658 dff1o2 6808 brprcneu 6851 brprcneuALT 6852 idref 7121 imaiun 7222 sorpss 7707 opabex3d 7947 opabex3rd 7948 opabex3 7949 ovmptss 8075 frpoins3xpg 8122 frpoins3xp3g 8123 poxp2 8125 poxp3 8132 fnsuppres 8173 sbthfilem 9168 ttrcltr 9676 rankc1 9830 aceq1 10077 dfac10 10098 fin41 10404 axgroth6 10788 genpass 10969 infm3 12149 prime 12622 elixx3g 13326 elfz2 13482 elfzuzb 13486 rpnnen2lem12 16200 divalgb 16381 1nprm 16656 maxprmfct 16686 vdwmc 16956 imasleval 17511 issubm 18737 issubg3 19083 efgrelexlemb 19687 isdomn5 20626 isdomn2 20627 isdomn3 20631 ist1-2 23241 unisngl 23421 elflim2 23858 isfcls 23903 istlm 24079 isnlm 24570 ishl2 25277 ovoliunlem1 25410 eln0s 28258 zaddscl 28289 readdscl 28357 remulscl 28360 erclwwlkref 29956 erclwwlknref 30005 0wlk 30052 h1de2ctlem 31491 nonbooli 31587 5oalem7 31596 ho01i 31764 rnbra 32043 cvnbtwn3 32224 chrelat2i 32301 difrab2 32434 uniinn0 32486 disjex 32528 maprnin 32661 ordtconnlem1 33921 esum2dlem 34089 eulerpartgbij 34370 eulerpartlemr 34372 eulerpartlemn 34379 ballotlem2 34487 bnj976 34774 bnj1185 34790 bnj543 34890 bnj571 34903 bnj611 34915 bnj916 34930 bnj1000 34938 bnj1040 34969 iscvm 35253 untuni 35703 dfso3 35714 dffr5 35748 elima4 35770 brtxpsd3 35891 brbigcup 35893 fixcnv 35903 ellimits 35905 elfuns 35910 brimage 35921 brcart 35927 brimg 35932 brapply 35933 brcup 35934 brcap 35935 dfrdg4 35946 dfint3 35947 ellines 36147 elicc3 36312 bj-snsetex 36958 bj-snglc 36964 bj-projun 36989 wl-2xor 37478 wl-cases2-dnf 37507 poimirlem27 37648 mblfinlem2 37659 iscrngo2 37998 n0elqs 38321 inxpxrn 38388 eqvrelcoss3 38616 prtlem70 38857 prtlem100 38859 prtlem15 38875 prter2 38881 lcvnbtwn3 39028 ishlat1 39352 ishlat2 39353 hlrelat2 39404 islpln5 39536 islvol5 39580 pclclN 39892 cdleme0nex 40291 eu6w 42671 aaitgo 43158 onmaxnelsup 43219 onsupnmax 43224 nnoeomeqom 43308 imaiun1 43647 relexp0eq 43697 ntrk1k3eqk13 44046 2sbc6g 44411 2sbc5g 44412 2reu7 47116 2reu8 47117 mosssn2 48809 iinxp 48823 ixpv 48882 alsconv 49783 |
| Copyright terms: Public domain | W3C validator |