Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 275 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biadan 815 pm4.78 931 xor 1011 cases2 1044 noranOLD 1529 nic-ax 1677 nfnbi 1858 2sb6 2090 2sb5 2275 dfsb7 2279 2sb5rf 2472 2sb6rf 2473 eu6lem 2573 eu6 2574 2mo2 2649 2eu7 2659 2eu8 2660 euae 2661 r3al 3125 ralcom4 3161 rexcom4 3179 risset 3193 r2exlem 3230 moel 3349 ralxpxfr2d 3568 reuind 3683 undif3 4221 unab 4229 inab 4230 n0el 4292 inssdif0 4300 ab0 4305 ssundif 4415 ralf0OLD 4445 raldifsnb 4726 pwtp 4831 uniprOLD 4855 uni0b 4864 iinuni 5023 reusv2lem4 5319 pwtr 5362 opthprc 5642 xpiundir 5649 xpsspw 5708 relun 5710 inopab 5728 difopab 5729 ralxpf 5744 dmiun 5811 elidinxp 5940 iresn0n0 5952 inisegn0 5995 rniun 6040 imaco 6144 rnco 6145 mptfnf 6552 fnopabg 6554 dff1o2 6705 brprcneu 6747 fvprc 6748 idref 7000 imaiun 7100 sorpss 7559 opabex3d 7781 opabex3rd 7782 opabex3 7783 ovmptss 7904 fnsuppres 7978 sbthfilem 8941 rankc1 9559 aceq1 9804 dfac10 9824 fin41 10131 axgroth6 10515 genpass 10696 infm3 11864 prime 12331 elixx3g 13021 elfz2 13175 elfzuzb 13179 rpnnen2lem12 15862 divalgb 16041 1nprm 16312 maxprmfct 16342 vdwmc 16607 imasleval 17169 issubm 18357 issubg3 18688 efgrelexlemb 19271 ist1-2 22406 unisngl 22586 elflim2 23023 isfcls 23068 istlm 23244 isnlm 23745 ishl2 24439 ovoliunlem1 24571 erclwwlkref 28285 erclwwlknref 28334 0wlk 28381 h1de2ctlem 29818 nonbooli 29914 5oalem7 29923 ho01i 30091 rnbra 30370 cvnbtwn3 30551 chrelat2i 30628 nelbOLDOLD 30718 difrab2 30746 uniinn0 30791 disjex 30832 maprnin 30968 ordtconnlem1 31776 esum2dlem 31960 eulerpartgbij 32239 eulerpartlemr 32241 eulerpartlemn 32248 ballotlem2 32355 bnj976 32657 bnj1185 32673 bnj543 32773 bnj571 32786 bnj611 32798 bnj916 32813 bnj1000 32821 bnj1040 32852 iscvm 33121 untuni 33550 dfso3 33566 ralxp3f 33588 dffr5 33627 elima4 33656 ttrcltr 33702 frpoins3xpg 33714 frpoins3xp3g 33715 poxp2 33717 brtxpsd3 34125 brbigcup 34127 fixcnv 34137 ellimits 34139 elfuns 34144 brimage 34155 brcart 34161 brimg 34166 brapply 34167 brcup 34168 brcap 34169 dfrdg4 34180 dfint3 34181 ellines 34381 elicc3 34433 bj-snsetex 35080 bj-snglc 35086 bj-projun 35111 wl-2xor 35581 wl-cases2-dnf 35598 poimirlem27 35731 mblfinlem2 35742 iscrngo2 36082 n0elqs 36388 inxpxrn 36448 eqvrelcoss3 36658 prtlem70 36798 prtlem100 36800 prtlem15 36816 prter2 36822 lcvnbtwn3 36969 ishlat1 37293 ishlat2 37294 hlrelat2 37344 islpln5 37476 islvol5 37520 pclclN 37832 cdleme0nex 38231 isdomn5 40099 aaitgo 40903 isdomn3 40945 imaiun1 41148 relexp0eq 41198 ntrk1k3eqk13 41549 2sbc6g 41922 2sbc5g 41923 2reu7 44490 2reu8 44491 mosssn2 46050 iscnrm3lem3 46117 alsconv 46380 |
Copyright terms: Public domain | W3C validator |