Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3lem2 Structured version   Visualization version   GIF version

Theorem iscnrm3lem2 46116
Description: Lemma for iscnrm3 46134 proving a biconditional on restricted universal quantifications. (Contributed by Zhi Wang, 3-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3lem2.1 (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 → ((𝑤𝐷𝑣𝐸) → 𝜒)))
iscnrm3lem2.2 (𝜑 → (∀𝑤𝐷𝑣𝐸 𝜒 → ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))
Assertion
Ref Expression
iscnrm3lem2 (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 ↔ ∀𝑤𝐷𝑣𝐸 𝜒))
Distinct variable groups:   𝑣,𝐴,𝑤,𝑦,𝑧   𝑣,𝐵,𝑤,𝑧   𝑣,𝐶,𝑤   𝑣,𝐷,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝜒,𝑥,𝑦,𝑧   𝜑,𝑣,𝑤,𝑥,𝑦,𝑧   𝜓,𝑣,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑤,𝑣)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑤)   𝐸(𝑤,𝑣)

Proof of Theorem iscnrm3lem2
StepHypRef Expression
1 2ax5 1941 . . . 4 (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓) → ∀𝑤𝑣𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓))
2 r3al 3125 . . . . . 6 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓))
3 iscnrm3lem2.1 . . . . . 6 (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 → ((𝑤𝐷𝑣𝐸) → 𝜒)))
42, 3syl5bir 242 . . . . 5 (𝜑 → (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓) → ((𝑤𝐷𝑣𝐸) → 𝜒)))
542alimdv 1922 . . . 4 (𝜑 → (∀𝑤𝑣𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓) → ∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒)))
61, 5syl5 34 . . 3 (𝜑 → (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓) → ∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒)))
7 2ax5 1941 . . . . 5 (∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒) → ∀𝑦𝑧𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒))
87alrimiv 1931 . . . 4 (∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒) → ∀𝑥𝑦𝑧𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒))
9 r2al 3124 . . . . . . 7 (∀𝑤𝐷𝑣𝐸 𝜒 ↔ ∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒))
10 iscnrm3lem2.2 . . . . . . 7 (𝜑 → (∀𝑤𝐷𝑣𝐸 𝜒 → ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))
119, 10syl5bir 242 . . . . . 6 (𝜑 → (∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒) → ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))
12112alimdv 1922 . . . . 5 (𝜑 → (∀𝑦𝑧𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒) → ∀𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))
1312alimdv 1920 . . . 4 (𝜑 → (∀𝑥𝑦𝑧𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒) → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))
148, 13syl5 34 . . 3 (𝜑 → (∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒) → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))
156, 14impbid 211 . 2 (𝜑 → (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓) ↔ ∀𝑤𝑣((𝑤𝐷𝑣𝐸) → 𝜒)))
1615, 2, 93bitr4g 313 1 (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 ↔ ∀𝑤𝐷𝑣𝐸 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1537  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-ex 1784  df-ral 3068
This theorem is referenced by:  iscnrm3  46134
  Copyright terms: Public domain W3C validator