Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3lem5 Structured version   Visualization version   GIF version

Theorem iscnrm3lem5 46119
Description: Lemma for iscnrm3l 46133. (Contributed by Zhi Wang, 3-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3lem5.1 ((𝑥 = 𝑆𝑦 = 𝑇) → (𝜑𝜓))
iscnrm3lem5.2 ((𝑥 = 𝑆𝑦 = 𝑇) → (𝜒𝜃))
iscnrm3lem5.3 ((𝜏𝜂𝜁) → (𝑆𝑉𝑇𝑊))
iscnrm3lem5.4 ((𝜏𝜂𝜁) → ((𝜓𝜃) → 𝜎))
Assertion
Ref Expression
iscnrm3lem5 (𝜏 → (∀𝑥𝑉𝑦𝑊 (𝜑𝜒) → (𝜂 → (𝜁𝜎))))
Distinct variable groups:   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝜓,𝑥,𝑦   𝜃,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑥,𝑦)   𝜁(𝑥,𝑦)   𝜎(𝑥,𝑦)

Proof of Theorem iscnrm3lem5
StepHypRef Expression
1 iscnrm3lem5.1 . . . 4 ((𝑥 = 𝑆𝑦 = 𝑇) → (𝜑𝜓))
2 iscnrm3lem5.2 . . . 4 ((𝑥 = 𝑆𝑦 = 𝑇) → (𝜒𝜃))
31, 2imbi12d 344 . . 3 ((𝑥 = 𝑆𝑦 = 𝑇) → ((𝜑𝜒) ↔ (𝜓𝜃)))
43rspc2gv 3561 . 2 ((𝑆𝑉𝑇𝑊) → (∀𝑥𝑉𝑦𝑊 (𝜑𝜒) → (𝜓𝜃)))
5 iscnrm3lem5.3 . 2 ((𝜏𝜂𝜁) → (𝑆𝑉𝑇𝑊))
6 iscnrm3lem5.4 . 2 ((𝜏𝜂𝜁) → ((𝜓𝜃) → 𝜎))
74, 5, 6iscnrm3lem4 46118 1 (𝜏 → (∀𝑥𝑉𝑦𝑊 (𝜑𝜒) → (𝜂 → (𝜁𝜎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068
This theorem is referenced by:  iscnrm3l  46133
  Copyright terms: Public domain W3C validator