| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3l 48821. (Contributed by Zhi Wang, 3-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3lem5.1 | ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜑 ↔ 𝜓)) |
| iscnrm3lem5.2 | ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜒 ↔ 𝜃)) |
| iscnrm3lem5.3 | ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → (𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊)) |
| iscnrm3lem5.4 | ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝜓 → 𝜃) → 𝜎)) |
| Ref | Expression |
|---|---|
| iscnrm3lem5 | ⊢ (𝜏 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 (𝜑 → 𝜒) → (𝜂 → (𝜁 → 𝜎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3lem5.1 | . . . 4 ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜑 ↔ 𝜓)) | |
| 2 | iscnrm3lem5.2 | . . . 4 ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ ((𝑥 = 𝑆 ∧ 𝑦 = 𝑇) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) |
| 4 | 3 | rspc2gv 3631 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 (𝜑 → 𝜒) → (𝜓 → 𝜃))) |
| 5 | iscnrm3lem5.3 | . 2 ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → (𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊)) | |
| 6 | iscnrm3lem5.4 | . 2 ⊢ ((𝜏 ∧ 𝜂 ∧ 𝜁) → ((𝜓 → 𝜃) → 𝜎)) | |
| 7 | 4, 5, 6 | iscnrm3lem4 48806 | 1 ⊢ (𝜏 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 (𝜑 → 𝜒) → (𝜂 → (𝜁 → 𝜎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 |
| This theorem is referenced by: iscnrm3l 48821 |
| Copyright terms: Public domain | W3C validator |