Proof of Theorem iscnrm3r
Step | Hyp | Ref
| Expression |
1 | | oveq2 7276 |
. . . . . . 7
⊢ (𝑧 = (∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (𝐽 ↾t 𝑧) = (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) |
2 | 1 | fveq2d 6772 |
. . . . . 6
⊢ (𝑧 = (∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (Clsd‘(𝐽 ↾t 𝑧)) = (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) |
3 | 1 | rexeqdv 3347 |
. . . . . . . . 9
⊢ (𝑧 = (∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) ↔ ∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
4 | 1, 3 | rexeqbidv 3335 |
. . . . . . . 8
⊢ (𝑧 = (∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) ↔ ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
5 | 4 | imbi2d 340 |
. . . . . . 7
⊢ (𝑧 = (∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) ↔ ((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
6 | 2, 5 | raleqbidv 3334 |
. . . . . 6
⊢ (𝑧 = (∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) ↔ ∀𝑑 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
7 | 2, 6 | raleqbidv 3334 |
. . . . 5
⊢ (𝑧 = (∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) ↔ ∀𝑐 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
8 | 7 | rspcv 3555 |
. . . 4
⊢ ((∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽
→ (∀𝑧 ∈
𝒫 ∪ 𝐽∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → ∀𝑐 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
9 | 8 | 3ad2ant1 1131 |
. . 3
⊢ (((∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽
∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑧 ∈ 𝒫 ∪ 𝐽∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → ∀𝑐 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
10 | | ineq12 4146 |
. . . . . . 7
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑐 ∩ 𝑑) = ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)))) |
11 | 10 | eqeq1d 2741 |
. . . . . 6
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → ((𝑐 ∩ 𝑑) = ∅ ↔ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅)) |
12 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → 𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇))) |
13 | 12 | sseq1d 3956 |
. . . . . . . 8
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑐 ⊆ 𝑙 ↔ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙)) |
14 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) |
15 | 14 | sseq1d 3956 |
. . . . . . . 8
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑑 ⊆ 𝑘 ↔ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘)) |
16 | 13, 15 | 3anbi12d 1435 |
. . . . . . 7
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → ((𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) ↔ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
17 | 16 | 2rexbidv 3230 |
. . . . . 6
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) ↔ ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅))) |
18 | 11, 17 | imbi12d 344 |
. . . . 5
⊢ ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) ↔ (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
19 | 18 | rspc2gv 3569 |
. . . 4
⊢
(((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑐 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
20 | 19 | 3adant1 1128 |
. . 3
⊢ (((∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽
∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑐 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
21 | 9, 20 | syld 47 |
. 2
⊢ (((∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽
∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑧 ∈ 𝒫 ∪ 𝐽∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)))) |
22 | | iscnrm3rlem3 46188 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽)) → ((∪
𝐽 ∖
(((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽
∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))) |
23 | 22 | 3adant3 1130 |
. 2
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → ((∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 ∪ 𝐽
∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))) |
24 | | disjdifb 46107 |
. . . 4
⊢
((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ |
25 | 24 | a1i 11 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅) |
26 | | iscnrm3rlem8 46193 |
. . 3
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) |
27 | 25, 26 | embantd 59 |
. 2
⊢ ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → ((((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽 ↾t (∪ 𝐽
∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) |
28 | 21, 23, 27 | iscnrm3lem4 46182 |
1
⊢ (𝐽 ∈ Top →
(∀𝑧 ∈ 𝒫
∪ 𝐽∀𝑐 ∈ (Clsd‘(𝐽 ↾t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽 ↾t 𝑧))((𝑐 ∩ 𝑑) = ∅ → ∃𝑙 ∈ (𝐽 ↾t 𝑧)∃𝑘 ∈ (𝐽 ↾t 𝑧)(𝑐 ⊆ 𝑙 ∧ 𝑑 ⊆ 𝑘 ∧ (𝑙 ∩ 𝑘) = ∅)) → ((𝑆 ∈ 𝒫 ∪ 𝐽
∧ 𝑇 ∈ 𝒫
∪ 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑆 ⊆ 𝑛 ∧ 𝑇 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))))) |