Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3r Structured version   Visualization version   GIF version

Theorem iscnrm3r 48929
Description: Lemma for iscnrm3 48933. If all subspaces of a topology are normal, i.e., two disjoint closed sets can be separated by open neighborhoods, then in the original topology two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3r (𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ((𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))))
Distinct variable groups:   𝑘,𝐽,𝑙,𝑚,𝑛   𝑆,𝑘,𝑙,𝑚,𝑛   𝑇,𝑘,𝑙,𝑚,𝑛   𝐽,𝑐,𝑑,𝑧,𝑘,𝑙   𝑆,𝑐,𝑑,𝑧   𝑇,𝑐,𝑑,𝑧

Proof of Theorem iscnrm3r
StepHypRef Expression
1 oveq2 7377 . . . . . . 7 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (𝐽t 𝑧) = (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))
21fveq2d 6844 . . . . . 6 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (Clsd‘(𝐽t 𝑧)) = (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))
31rexeqdv 3297 . . . . . . . . 9 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)))
41, 3rexeqbidv 3317 . . . . . . . 8 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)))
54imbi2d 340 . . . . . . 7 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ ((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
62, 5raleqbidv 3316 . . . . . 6 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ ∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
72, 6raleqbidv 3316 . . . . 5 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∀𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ ∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
87rspcv 3581 . . . 4 (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
983ad2ant1 1133 . . 3 ((( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
10 ineq12 4174 . . . . . . 7 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑐𝑑) = ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))))
1110eqeq1d 2731 . . . . . 6 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → ((𝑐𝑑) = ∅ ↔ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅))
12 simpl 482 . . . . . . . . 9 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → 𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)))
1312sseq1d 3975 . . . . . . . 8 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑐𝑙 ↔ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙))
14 simpr 484 . . . . . . . . 9 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)))
1514sseq1d 3975 . . . . . . . 8 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑑𝑘 ↔ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘))
1613, 153anbi12d 1439 . . . . . . 7 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → ((𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅)))
17162rexbidv 3200 . . . . . 6 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅)))
1811, 17imbi12d 344 . . . . 5 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
1918rspc2gv 3595 . . . 4 (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
20193adant1 1130 . . 3 ((( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
219, 20syld 47 . 2 ((( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
22 iscnrm3rlem3 48923 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))
23223adant3 1132 . 2 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))
24 disjdifb 48791 . . . 4 ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅
2524a1i 11 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅)
26 iscnrm3rlem8 48928 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))
2725, 26embantd 59 . 2 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → ((((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅)) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))
2821, 23, 27iscnrm3lem4 48917 1 (𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ((𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3908  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559   cuni 4867  cfv 6499  (class class class)co 7369  t crest 17359  Topctop 22813  Clsdccld 22936  clsccl 22938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22814  df-topon 22831  df-bases 22866  df-cld 22939  df-cls 22941
This theorem is referenced by:  iscnrm3  48933
  Copyright terms: Public domain W3C validator