Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3r Structured version   Visualization version   GIF version

Theorem iscnrm3r 48805
Description: Lemma for iscnrm3 48809. If all subspaces of a topology are normal, i.e., two disjoint closed sets can be separated by open neighborhoods, then in the original topology two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
iscnrm3r (𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ((𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))))
Distinct variable groups:   𝑘,𝐽,𝑙,𝑚,𝑛   𝑆,𝑘,𝑙,𝑚,𝑛   𝑇,𝑘,𝑙,𝑚,𝑛   𝐽,𝑐,𝑑,𝑧,𝑘,𝑙   𝑆,𝑐,𝑑,𝑧   𝑇,𝑐,𝑑,𝑧

Proof of Theorem iscnrm3r
StepHypRef Expression
1 oveq2 7421 . . . . . . 7 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (𝐽t 𝑧) = (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))
21fveq2d 6890 . . . . . 6 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (Clsd‘(𝐽t 𝑧)) = (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))))
31rexeqdv 3310 . . . . . . . . 9 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)))
41, 3rexeqbidv 3330 . . . . . . . 8 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)))
54imbi2d 340 . . . . . . 7 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ ((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
62, 5raleqbidv 3329 . . . . . 6 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ ∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
72, 6raleqbidv 3329 . . . . 5 (𝑧 = ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) → (∀𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ ∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
87rspcv 3601 . . . 4 (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
983ad2ant1 1133 . . 3 ((( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅))))
10 ineq12 4195 . . . . . . 7 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑐𝑑) = ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))))
1110eqeq1d 2736 . . . . . 6 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → ((𝑐𝑑) = ∅ ↔ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅))
12 simpl 482 . . . . . . . . 9 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → 𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)))
1312sseq1d 3995 . . . . . . . 8 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑐𝑙 ↔ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙))
14 simpr 484 . . . . . . . . 9 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)))
1514sseq1d 3995 . . . . . . . 8 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (𝑑𝑘 ↔ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘))
1613, 153anbi12d 1438 . . . . . . 7 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → ((𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅)))
17162rexbidv 3209 . . . . . 6 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅) ↔ ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅)))
1811, 17imbi12d 344 . . . . 5 ((𝑐 = (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∧ 𝑑 = (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) → (((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) ↔ (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
1918rspc2gv 3615 . . . 4 (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
20193adant1 1130 . . 3 ((( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑐 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))∀𝑑 ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
219, 20syld 47 . 2 ((( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))) → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → (((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅))))
22 iscnrm3rlem3 48799 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))
23223adant3 1132 . 2 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))
24 disjdifb 48687 . . . 4 ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅
2524a1i 11 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → ((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅)
26 iscnrm3rlem8 48804 . . 3 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))
2725, 26embantd 59 . 2 ((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → ((((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∩ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆))) = ∅ → ∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅)) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))
2821, 23, 27iscnrm3lem4 48793 1 (𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ((𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  cdif 3928  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4887  cfv 6541  (class class class)co 7413  t crest 17436  Topctop 22847  Clsdccld 22970  clsccl 22972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-en 8968  df-fin 8971  df-fi 9433  df-rest 17438  df-topgen 17459  df-top 22848  df-topon 22865  df-bases 22900  df-cld 22973  df-cls 22975
This theorem is referenced by:  iscnrm3  48809
  Copyright terms: Public domain W3C validator