| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp53 447 funssres 6530 fvopab3ig 6931 fvmptt 6955 fvn0elsuppb 8117 tfr3 8324 omordi 8487 odi 8500 nnmordi 8552 php 9123 fiint 9218 ordiso2 9408 cfcoflem 10170 zorn2lem5 10398 inar1 10673 psslinpr 10929 recexsrlem 11001 qaddcl 12865 qmulcl 12867 elfznelfzo 13675 expcan 14078 ltexp2 14079 bernneq 14138 expnbnd 14141 relexpaddg 14962 lcmfunsnlem2lem1 16551 initoeu2lem1 17923 elcls3 22999 opnneissb 23030 txbas 23483 grpoidinvlem3 30488 grporcan 30500 shscli 31299 spansncol 31550 spanunsni 31561 spansncvi 31634 homco1 31783 homulass 31784 atomli 32364 chirredlem1 32372 cdj1i 32415 satffunlem 35466 frinfm 37795 filbcmb 37800 unichnidl 38091 dmncan1 38136 pclfinclN 40069 iccelpart 47557 prmdvdsfmtnof1lem2 47709 gpgcubic 48203 gpg5nbgr3star 48205 scmsuppss 48495 iscnrm3lem4 49060 |
| Copyright terms: Public domain | W3C validator |