![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: exp53 447 funssres 6612 fvopab3ig 7012 fvmptt 7036 fvn0elsuppb 8205 tfr3 8438 omordi 8603 odi 8616 nnmordi 8668 php 9245 phpOLD 9257 fiint 9364 fiintOLD 9365 ordiso2 9553 cfcoflem 10310 zorn2lem5 10538 inar1 10813 psslinpr 11069 recexsrlem 11141 qaddcl 13005 qmulcl 13007 elfznelfzo 13808 expcan 14206 ltexp2 14207 bernneq 14265 expnbnd 14268 relexpaddg 15089 lcmfunsnlem2lem1 16672 initoeu2lem1 18068 elcls3 23107 opnneissb 23138 txbas 23591 grpoidinvlem3 30535 grporcan 30547 shscli 31346 spansncol 31597 spanunsni 31608 spansncvi 31681 homco1 31830 homulass 31831 atomli 32411 chirredlem1 32419 cdj1i 32462 satffunlem 35386 frinfm 37722 filbcmb 37727 unichnidl 38018 dmncan1 38063 pclfinclN 39933 iccelpart 47358 prmdvdsfmtnof1lem2 47510 gpgcubic 47970 gpg5nbgr3star 47972 scmsuppss 48216 iscnrm3lem4 48733 |
Copyright terms: Public domain | W3C validator |