| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp53 447 funssres 6525 fvopab3ig 6925 fvmptt 6949 fvn0elsuppb 8111 tfr3 8318 omordi 8481 odi 8494 nnmordi 8546 php 9116 fiint 9211 ordiso2 9401 cfcoflem 10160 zorn2lem5 10388 inar1 10663 psslinpr 10919 recexsrlem 10991 qaddcl 12860 qmulcl 12862 elfznelfzo 13670 expcan 14073 ltexp2 14074 bernneq 14133 expnbnd 14136 relexpaddg 14957 lcmfunsnlem2lem1 16546 initoeu2lem1 17918 elcls3 22996 opnneissb 23027 txbas 23480 grpoidinvlem3 30481 grporcan 30493 shscli 31292 spansncol 31543 spanunsni 31554 spansncvi 31627 homco1 31776 homulass 31777 atomli 32357 chirredlem1 32365 cdj1i 32408 satffunlem 35433 frinfm 37774 filbcmb 37779 unichnidl 38070 dmncan1 38115 pclfinclN 39988 iccelpart 47463 prmdvdsfmtnof1lem2 47615 gpgcubic 48109 gpg5nbgr3star 48111 scmsuppss 48401 iscnrm3lem4 48966 |
| Copyright terms: Public domain | W3C validator |