| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp53 447 funssres 6580 fvopab3ig 6982 fvmptt 7006 fvn0elsuppb 8180 tfr3 8413 omordi 8578 odi 8591 nnmordi 8643 php 9221 phpOLD 9231 fiint 9338 fiintOLD 9339 ordiso2 9529 cfcoflem 10286 zorn2lem5 10514 inar1 10789 psslinpr 11045 recexsrlem 11117 qaddcl 12981 qmulcl 12983 elfznelfzo 13788 expcan 14187 ltexp2 14188 bernneq 14247 expnbnd 14250 relexpaddg 15072 lcmfunsnlem2lem1 16657 initoeu2lem1 18027 elcls3 23021 opnneissb 23052 txbas 23505 grpoidinvlem3 30487 grporcan 30499 shscli 31298 spansncol 31549 spanunsni 31560 spansncvi 31633 homco1 31782 homulass 31783 atomli 32363 chirredlem1 32371 cdj1i 32414 satffunlem 35423 frinfm 37759 filbcmb 37764 unichnidl 38055 dmncan1 38100 pclfinclN 39969 iccelpart 47447 prmdvdsfmtnof1lem2 47599 gpgcubic 48081 gpg5nbgr3star 48083 scmsuppss 48346 iscnrm3lem4 48910 |
| Copyright terms: Public domain | W3C validator |