![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 413 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 431 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: exp53 448 funssres 6268 fvopab3ig 6631 fvmptt 6654 fvn0elsuppb 7698 tfr3 7887 omordi 8042 odi 8055 nnmordi 8107 php 8548 fiint 8641 ordiso2 8825 cfcoflem 9540 zorn2lem5 9768 inar1 10043 psslinpr 10299 recexsrlem 10371 qaddcl 12214 qmulcl 12216 elfznelfzo 12992 expcan 13383 ltexp2 13384 bernneq 13440 expnbnd 13443 relexpaddg 14246 lcmfunsnlem2lem1 15811 initoeu2lem1 17103 elcls3 21375 opnneissb 21406 txbas 21859 grpoidinvlem3 27974 grporcan 27986 shscli 28785 spansncol 29036 spanunsni 29047 spansncvi 29120 homco1 29269 homulass 29270 atomli 29850 chirredlem1 29858 cdj1i 29901 satffunlem 32257 frinfm 34561 filbcmb 34566 unichnidl 34860 dmncan1 34905 pclfinclN 36636 iccelpart 43095 prmdvdsfmtnof1lem2 43249 scmsuppss 43920 |
Copyright terms: Public domain | W3C validator |