Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: exp53 447 funssres 6462 fvopab3ig 6853 fvmptt 6877 fvn0elsuppb 7968 tfr3 8201 omordi 8359 odi 8372 nnmordi 8424 php 8897 fiint 9021 ordiso2 9204 cfcoflem 9959 zorn2lem5 10187 inar1 10462 psslinpr 10718 recexsrlem 10790 qaddcl 12634 qmulcl 12636 elfznelfzo 13420 expcan 13815 ltexp2 13816 bernneq 13872 expnbnd 13875 relexpaddg 14692 lcmfunsnlem2lem1 16271 initoeu2lem1 17645 elcls3 22142 opnneissb 22173 txbas 22626 grpoidinvlem3 28769 grporcan 28781 shscli 29580 spansncol 29831 spanunsni 29842 spansncvi 29915 homco1 30064 homulass 30065 atomli 30645 chirredlem1 30653 cdj1i 30696 satffunlem 33263 frinfm 35820 filbcmb 35825 unichnidl 36116 dmncan1 36161 pclfinclN 37891 iccelpart 44773 prmdvdsfmtnof1lem2 44925 scmsuppss 45596 iscnrm3lem4 46118 |
Copyright terms: Public domain | W3C validator |