Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 413 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 431 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: exp53 448 funssres 6478 fvopab3ig 6871 fvmptt 6895 fvn0elsuppb 7997 tfr3 8230 omordi 8397 odi 8410 nnmordi 8462 php 8993 phpOLD 9005 fiint 9091 ordiso2 9274 cfcoflem 10028 zorn2lem5 10256 inar1 10531 psslinpr 10787 recexsrlem 10859 qaddcl 12705 qmulcl 12707 elfznelfzo 13492 expcan 13887 ltexp2 13888 bernneq 13944 expnbnd 13947 relexpaddg 14764 lcmfunsnlem2lem1 16343 initoeu2lem1 17729 elcls3 22234 opnneissb 22265 txbas 22718 grpoidinvlem3 28868 grporcan 28880 shscli 29679 spansncol 29930 spanunsni 29941 spansncvi 30014 homco1 30163 homulass 30164 atomli 30744 chirredlem1 30752 cdj1i 30795 satffunlem 33363 frinfm 35893 filbcmb 35898 unichnidl 36189 dmncan1 36234 pclfinclN 37964 iccelpart 44885 prmdvdsfmtnof1lem2 45037 scmsuppss 45708 iscnrm3lem4 46230 |
Copyright terms: Public domain | W3C validator |