| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp53 447 funssres 6560 fvopab3ig 6964 fvmptt 6988 fvn0elsuppb 8160 tfr3 8367 omordi 8530 odi 8543 nnmordi 8595 php 9171 fiint 9277 fiintOLD 9278 ordiso2 9468 cfcoflem 10225 zorn2lem5 10453 inar1 10728 psslinpr 10984 recexsrlem 11056 qaddcl 12924 qmulcl 12926 elfznelfzo 13733 expcan 14134 ltexp2 14135 bernneq 14194 expnbnd 14197 relexpaddg 15019 lcmfunsnlem2lem1 16608 initoeu2lem1 17976 elcls3 22970 opnneissb 23001 txbas 23454 grpoidinvlem3 30435 grporcan 30447 shscli 31246 spansncol 31497 spanunsni 31508 spansncvi 31581 homco1 31730 homulass 31731 atomli 32311 chirredlem1 32319 cdj1i 32362 satffunlem 35388 frinfm 37729 filbcmb 37734 unichnidl 38025 dmncan1 38070 pclfinclN 39944 iccelpart 47434 prmdvdsfmtnof1lem2 47586 gpgcubic 48070 gpg5nbgr3star 48072 scmsuppss 48359 iscnrm3lem4 48924 |
| Copyright terms: Public domain | W3C validator |