![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: exp53 447 funssres 6622 fvopab3ig 7025 fvmptt 7049 fvn0elsuppb 8222 tfr3 8455 omordi 8622 odi 8635 nnmordi 8687 php 9273 phpOLD 9285 fiint 9394 fiintOLD 9395 ordiso2 9584 cfcoflem 10341 zorn2lem5 10569 inar1 10844 psslinpr 11100 recexsrlem 11172 qaddcl 13030 qmulcl 13032 elfznelfzo 13822 expcan 14219 ltexp2 14220 bernneq 14278 expnbnd 14281 relexpaddg 15102 lcmfunsnlem2lem1 16685 initoeu2lem1 18081 elcls3 23112 opnneissb 23143 txbas 23596 grpoidinvlem3 30538 grporcan 30550 shscli 31349 spansncol 31600 spanunsni 31611 spansncvi 31684 homco1 31833 homulass 31834 atomli 32414 chirredlem1 32422 cdj1i 32465 satffunlem 35369 frinfm 37695 filbcmb 37700 unichnidl 37991 dmncan1 38036 pclfinclN 39907 iccelpart 47307 prmdvdsfmtnof1lem2 47459 scmsuppss 48097 iscnrm3lem4 48616 |
Copyright terms: Public domain | W3C validator |