| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp43 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp43.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| exp43 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp43.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
| 3 | 2 | exp4b 430 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: exp53 447 funssres 6563 fvopab3ig 6967 fvmptt 6991 fvn0elsuppb 8163 tfr3 8370 omordi 8533 odi 8546 nnmordi 8598 php 9177 fiint 9284 fiintOLD 9285 ordiso2 9475 cfcoflem 10232 zorn2lem5 10460 inar1 10735 psslinpr 10991 recexsrlem 11063 qaddcl 12931 qmulcl 12933 elfznelfzo 13740 expcan 14141 ltexp2 14142 bernneq 14201 expnbnd 14204 relexpaddg 15026 lcmfunsnlem2lem1 16615 initoeu2lem1 17983 elcls3 22977 opnneissb 23008 txbas 23461 grpoidinvlem3 30442 grporcan 30454 shscli 31253 spansncol 31504 spanunsni 31515 spansncvi 31588 homco1 31737 homulass 31738 atomli 32318 chirredlem1 32326 cdj1i 32369 satffunlem 35395 frinfm 37736 filbcmb 37741 unichnidl 38032 dmncan1 38077 pclfinclN 39951 iccelpart 47438 prmdvdsfmtnof1lem2 47590 gpgcubic 48074 gpg5nbgr3star 48076 scmsuppss 48363 iscnrm3lem4 48928 |
| Copyright terms: Public domain | W3C validator |