MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jca2 Structured version   Visualization version   GIF version

Theorem jca2 513
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
jca2.1 (𝜑 → (𝜓𝜒))
jca2.2 (𝜓𝜃)
Assertion
Ref Expression
jca2 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem jca2
StepHypRef Expression
1 jca2.1 . 2 (𝜑 → (𝜓𝜒))
2 jca2.2 . . 3 (𝜓𝜃)
32a1i 11 . 2 (𝜑 → (𝜓𝜃))
41, 3jcad 512 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rr19.28v  3637  preddowncl  6308  ssimaex  6949  onfununi  8313  oaordex  8525  domtriord  9093  findcard3  9236  findcard3OLD  9237  unfilem1  9261  fodomfibOLD  9289  inf0  9581  inf3lem3  9590  tcel  9705  fidomtri2  9954  alephval3  10070  zorn2lem6  10461  fodomb  10486  eqreznegel  12900  iserodd  16813  cshwsiun  17077  txcn  23520  ssfg  23766  fclsnei  23913  eldmgm  26939  fnrelpredd  35086  cvmlift2lem10  35306  relcnveq3  38316  iss2  38333  elrelscnveq3  38489  jca3  38856  prjspreln0  42604  omabs2  43328  tfsconcatrn  43338  rfovcnvf1od  44000  mnuop3d  44267  ssclaxsep  44979
  Copyright terms: Public domain W3C validator