| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca2.2 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rr19.28v 3634 preddowncl 6305 ssimaex 6946 onfununi 8310 oaordex 8522 domtriord 9087 findcard3 9229 findcard3OLD 9230 unfilem1 9254 fodomfibOLD 9282 inf0 9574 inf3lem3 9583 tcel 9698 fidomtri2 9947 alephval3 10063 zorn2lem6 10454 fodomb 10479 eqreznegel 12893 iserodd 16806 cshwsiun 17070 txcn 23513 ssfg 23759 fclsnei 23906 eldmgm 26932 fnrelpredd 35079 cvmlift2lem10 35299 relcnveq3 38309 iss2 38326 elrelscnveq3 38482 jca3 38849 prjspreln0 42597 omabs2 43321 tfsconcatrn 43331 rfovcnvf1od 43993 mnuop3d 44260 ssclaxsep 44972 |
| Copyright terms: Public domain | W3C validator |