| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca2.2 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rr19.28v 3668 preddowncl 6353 ssimaex 6994 onfununi 8381 oaordex 8596 domtriord 9163 findcard3 9318 findcard3OLD 9319 unfilem1 9343 fodomfibOLD 9371 inf0 9661 inf3lem3 9670 tcel 9785 fidomtri2 10034 alephval3 10150 zorn2lem6 10541 fodomb 10566 eqreznegel 12976 iserodd 16873 cshwsiun 17137 txcn 23634 ssfg 23880 fclsnei 24027 eldmgm 27065 fnrelpredd 35103 cvmlift2lem10 35317 relcnveq3 38322 iss2 38345 elrelscnveq3 38492 jca3 38857 prjspreln0 42619 omabs2 43345 tfsconcatrn 43355 rfovcnvf1od 44017 mnuop3d 44290 ssclaxsep 44999 |
| Copyright terms: Public domain | W3C validator |