Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version |
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jca2.2 | ⊢ (𝜓 → 𝜃) |
Ref | Expression |
---|---|
jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 517 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 |
This theorem is referenced by: rr19.28v 3582 preddowncl 6154 ssimaex 6738 onfununi 7989 oaordex 8195 domtriord 8685 findcard3 8787 unfilem1 8808 fodomfib 8824 inf0 9110 inf3lem3 9119 tcel 9213 fidomtri2 9449 alephval3 9563 zorn2lem6 9954 fodomb 9979 eqreznegel 12367 iserodd 16220 cshwsiun 16484 txcn 22319 ssfg 22565 fclsnei 22712 eldmgm 25699 fnrelpredd 32583 cvmlift2lem10 32783 relcnveq3 36011 iss2 36034 elrelscnveq3 36164 jca3 36425 prjspreln0 39938 rfovcnvf1od 41071 mnuop3d 41345 |
Copyright terms: Public domain | W3C validator |