| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca2.2 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rr19.28v 3619 preddowncl 6287 ssimaex 6916 onfununi 8270 oaordex 8482 domtriord 9047 findcard3 9178 unfilem1 9200 fodomfibOLD 9226 inf0 9522 inf3lem3 9531 tcel 9644 fidomtri2 9898 alephval3 10012 zorn2lem6 10403 fodomb 10428 eqreznegel 12838 iserodd 16754 cshwsiun 17018 txcn 23561 ssfg 23807 fclsnei 23954 eldmgm 26979 fnrelpredd 35174 cvmlift2lem10 35428 relcnveq3 38432 iss2 38449 elrelscnveq3 38712 jca3 39028 prjspreln0 42767 omabs2 43489 tfsconcatrn 43499 rfovcnvf1od 44161 mnuop3d 44428 ssclaxsep 45139 |
| Copyright terms: Public domain | W3C validator |