MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jca2 Structured version   Visualization version   GIF version

Theorem jca2 513
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
jca2.1 (𝜑 → (𝜓𝜒))
jca2.2 (𝜓𝜃)
Assertion
Ref Expression
jca2 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem jca2
StepHypRef Expression
1 jca2.1 . 2 (𝜑 → (𝜓𝜒))
2 jca2.2 . . 3 (𝜓𝜃)
32a1i 11 . 2 (𝜑 → (𝜓𝜃))
41, 3jcad 512 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rr19.28v  3634  preddowncl  6305  ssimaex  6946  onfununi  8310  oaordex  8522  domtriord  9087  findcard3  9229  findcard3OLD  9230  unfilem1  9254  fodomfibOLD  9282  inf0  9574  inf3lem3  9583  tcel  9698  fidomtri2  9947  alephval3  10063  zorn2lem6  10454  fodomb  10479  eqreznegel  12893  iserodd  16806  cshwsiun  17070  txcn  23513  ssfg  23759  fclsnei  23906  eldmgm  26932  fnrelpredd  35079  cvmlift2lem10  35299  relcnveq3  38309  iss2  38326  elrelscnveq3  38482  jca3  38849  prjspreln0  42597  omabs2  43321  tfsconcatrn  43331  rfovcnvf1od  43993  mnuop3d  44260  ssclaxsep  44972
  Copyright terms: Public domain W3C validator