| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca2.2 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rr19.28v 3637 preddowncl 6308 ssimaex 6949 onfununi 8313 oaordex 8525 domtriord 9093 findcard3 9236 findcard3OLD 9237 unfilem1 9261 fodomfibOLD 9289 inf0 9581 inf3lem3 9590 tcel 9705 fidomtri2 9954 alephval3 10070 zorn2lem6 10461 fodomb 10486 eqreznegel 12900 iserodd 16813 cshwsiun 17077 txcn 23520 ssfg 23766 fclsnei 23913 eldmgm 26939 fnrelpredd 35086 cvmlift2lem10 35306 relcnveq3 38316 iss2 38333 elrelscnveq3 38489 jca3 38856 prjspreln0 42604 omabs2 43328 tfsconcatrn 43338 rfovcnvf1od 44000 mnuop3d 44267 ssclaxsep 44979 |
| Copyright terms: Public domain | W3C validator |