MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jca2 Structured version   Visualization version   GIF version

Theorem jca2 513
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
jca2.1 (𝜑 → (𝜓𝜒))
jca2.2 (𝜓𝜃)
Assertion
Ref Expression
jca2 (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem jca2
StepHypRef Expression
1 jca2.1 . 2 (𝜑 → (𝜓𝜒))
2 jca2.2 . . 3 (𝜓𝜃)
32a1i 11 . 2 (𝜑 → (𝜓𝜃))
41, 3jcad 512 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  rr19.28v  3592  preddowncl  6224  ssimaex  6835  onfununi  8143  oaordex  8351  domtriord  8859  findcard3  8987  unfilem1  9008  fodomfib  9023  inf0  9309  inf3lem3  9318  tcel  9434  fidomtri2  9683  alephval3  9797  zorn2lem6  10188  fodomb  10213  eqreznegel  12603  iserodd  16464  cshwsiun  16729  txcn  22685  ssfg  22931  fclsnei  23078  eldmgm  26076  fnrelpredd  32961  cvmlift2lem10  33174  relcnveq3  36383  iss2  36406  elrelscnveq3  36536  jca3  36797  prjspreln0  40369  rfovcnvf1od  41501  mnuop3d  41778
  Copyright terms: Public domain W3C validator