| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca2.2 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rr19.28v 3618 preddowncl 6274 ssimaex 6902 onfununi 8256 oaordex 8468 domtriord 9031 findcard3 9162 unfilem1 9184 fodomfibOLD 9210 inf0 9506 inf3lem3 9515 tcel 9628 fidomtri2 9882 alephval3 9996 zorn2lem6 10387 fodomb 10412 eqreznegel 12827 iserodd 16742 cshwsiun 17006 txcn 23536 ssfg 23782 fclsnei 23929 eldmgm 26954 fnrelpredd 35094 cvmlift2lem10 35348 relcnveq3 38355 iss2 38372 elrelscnveq3 38528 jca3 38895 prjspreln0 42642 omabs2 43365 tfsconcatrn 43375 rfovcnvf1od 44037 mnuop3d 44304 ssclaxsep 45015 |
| Copyright terms: Public domain | W3C validator |