| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca2.2 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rr19.28v 3647 preddowncl 6321 ssimaex 6964 onfununi 8355 oaordex 8570 domtriord 9137 findcard3 9290 findcard3OLD 9291 unfilem1 9315 fodomfibOLD 9343 inf0 9635 inf3lem3 9644 tcel 9759 fidomtri2 10008 alephval3 10124 zorn2lem6 10515 fodomb 10540 eqreznegel 12950 iserodd 16855 cshwsiun 17119 txcn 23564 ssfg 23810 fclsnei 23957 eldmgm 26984 fnrelpredd 35120 cvmlift2lem10 35334 relcnveq3 38339 iss2 38362 elrelscnveq3 38509 jca3 38874 prjspreln0 42632 omabs2 43356 tfsconcatrn 43366 rfovcnvf1od 44028 mnuop3d 44295 ssclaxsep 45007 |
| Copyright terms: Public domain | W3C validator |