Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version |
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jca2.2 | ⊢ (𝜓 → 𝜃) |
Ref | Expression |
---|---|
jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: rr19.28v 3592 preddowncl 6224 ssimaex 6835 onfununi 8143 oaordex 8351 domtriord 8859 findcard3 8987 unfilem1 9008 fodomfib 9023 inf0 9309 inf3lem3 9318 tcel 9434 fidomtri2 9683 alephval3 9797 zorn2lem6 10188 fodomb 10213 eqreznegel 12603 iserodd 16464 cshwsiun 16729 txcn 22685 ssfg 22931 fclsnei 23078 eldmgm 26076 fnrelpredd 32961 cvmlift2lem10 33174 relcnveq3 36383 iss2 36406 elrelscnveq3 36536 jca3 36797 prjspreln0 40369 rfovcnvf1od 41501 mnuop3d 41778 |
Copyright terms: Public domain | W3C validator |