![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jca2 | Structured version Visualization version GIF version |
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jca2.2 | ⊢ (𝜓 → 𝜃) |
Ref | Expression |
---|---|
jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: rr19.28v 3681 preddowncl 6364 ssimaex 7007 onfununi 8397 oaordex 8614 domtriord 9189 findcard3 9346 findcard3OLD 9347 unfilem1 9371 fodomfibOLD 9399 inf0 9690 inf3lem3 9699 tcel 9814 fidomtri2 10063 alephval3 10179 zorn2lem6 10570 fodomb 10595 eqreznegel 12999 iserodd 16882 cshwsiun 17147 txcn 23655 ssfg 23901 fclsnei 24048 eldmgm 27083 fnrelpredd 35065 cvmlift2lem10 35280 relcnveq3 38277 iss2 38300 elrelscnveq3 38447 jca3 38812 prjspreln0 42564 omabs2 43294 tfsconcatrn 43304 rfovcnvf1od 43966 mnuop3d 44240 |
Copyright terms: Public domain | W3C validator |