| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onpsstopbas | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.) |
| Ref | Expression |
|---|---|
| onpsstopbas | ⊢ On ⊊ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsstopbas 36462 | . 2 ⊢ On ⊆ TopBases | |
| 2 | indistop 22915 | . . . 4 ⊢ {∅, {{∅}}} ∈ Top | |
| 3 | topbas 22885 | . . . 4 ⊢ ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, {{∅}}} ∈ TopBases |
| 5 | snex 5374 | . . . . . 6 ⊢ {{∅}} ∈ V | |
| 6 | 5 | prid2 4716 | . . . . 5 ⊢ {{∅}} ∈ {∅, {{∅}}} |
| 7 | snsn0non 6432 | . . . . 5 ⊢ ¬ {{∅}} ∈ On | |
| 8 | jcn 162 | . . . . 5 ⊢ ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))) | |
| 9 | 6, 7, 8 | mp2 9 | . . . 4 ⊢ ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On) |
| 10 | onelon 6331 | . . . . 5 ⊢ (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On) | |
| 11 | 10 | ex 412 | . . . 4 ⊢ ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)) |
| 12 | 9, 11 | mto 197 | . . 3 ⊢ ¬ {∅, {{∅}}} ∈ On |
| 13 | 4, 12 | pm3.2i 470 | . 2 ⊢ ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) |
| 14 | ssnelpss 4064 | . 2 ⊢ (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases)) | |
| 15 | 1, 13, 14 | mp2 9 | 1 ⊢ On ⊊ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3902 ⊊ wpss 3903 ∅c0 4283 {csn 4576 {cpr 4578 Oncon0 6306 Topctop 22806 TopBasesctb 22858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22807 df-topon 22824 df-bases 22859 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |