Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onpsstopbas | Structured version Visualization version GIF version |
Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.) |
Ref | Expression |
---|---|
onpsstopbas | ⊢ On ⊊ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsstopbas 34646 | . 2 ⊢ On ⊆ TopBases | |
2 | indistop 22180 | . . . 4 ⊢ {∅, {{∅}}} ∈ Top | |
3 | topbas 22150 | . . . 4 ⊢ ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, {{∅}}} ∈ TopBases |
5 | snex 5357 | . . . . . 6 ⊢ {{∅}} ∈ V | |
6 | 5 | prid2 4702 | . . . . 5 ⊢ {{∅}} ∈ {∅, {{∅}}} |
7 | snsn0non 6393 | . . . . 5 ⊢ ¬ {{∅}} ∈ On | |
8 | jcn 162 | . . . . 5 ⊢ ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))) | |
9 | 6, 7, 8 | mp2 9 | . . . 4 ⊢ ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On) |
10 | onelon 6295 | . . . . 5 ⊢ (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On) | |
11 | 10 | ex 412 | . . . 4 ⊢ ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)) |
12 | 9, 11 | mto 196 | . . 3 ⊢ ¬ {∅, {{∅}}} ∈ On |
13 | 4, 12 | pm3.2i 470 | . 2 ⊢ ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) |
14 | ssnelpss 4049 | . 2 ⊢ (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases)) | |
15 | 1, 13, 14 | mp2 9 | 1 ⊢ On ⊊ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2101 ⊆ wss 3889 ⊊ wpss 3890 ∅c0 4259 {csn 4564 {cpr 4566 Oncon0 6270 Topctop 22070 TopBasesctb 22123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-ord 6273 df-on 6274 df-iota 6399 df-fun 6449 df-fv 6455 df-top 22071 df-topon 22088 df-bases 22124 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |