| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onpsstopbas | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.) |
| Ref | Expression |
|---|---|
| onpsstopbas | ⊢ On ⊊ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsstopbas 36424 | . 2 ⊢ On ⊆ TopBases | |
| 2 | indistop 22896 | . . . 4 ⊢ {∅, {{∅}}} ∈ Top | |
| 3 | topbas 22866 | . . . 4 ⊢ ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, {{∅}}} ∈ TopBases |
| 5 | snex 5394 | . . . . . 6 ⊢ {{∅}} ∈ V | |
| 6 | 5 | prid2 4730 | . . . . 5 ⊢ {{∅}} ∈ {∅, {{∅}}} |
| 7 | snsn0non 6462 | . . . . 5 ⊢ ¬ {{∅}} ∈ On | |
| 8 | jcn 162 | . . . . 5 ⊢ ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))) | |
| 9 | 6, 7, 8 | mp2 9 | . . . 4 ⊢ ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On) |
| 10 | onelon 6360 | . . . . 5 ⊢ (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On) | |
| 11 | 10 | ex 412 | . . . 4 ⊢ ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)) |
| 12 | 9, 11 | mto 197 | . . 3 ⊢ ¬ {∅, {{∅}}} ∈ On |
| 13 | 4, 12 | pm3.2i 470 | . 2 ⊢ ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) |
| 14 | ssnelpss 4080 | . 2 ⊢ (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases)) | |
| 15 | 1, 13, 14 | mp2 9 | 1 ⊢ On ⊊ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 ⊊ wpss 3918 ∅c0 4299 {csn 4592 {cpr 4594 Oncon0 6335 Topctop 22787 TopBasesctb 22839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-ord 6338 df-on 6339 df-iota 6467 df-fun 6516 df-fv 6522 df-top 22788 df-topon 22805 df-bases 22840 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |