| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onpsstopbas | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.) |
| Ref | Expression |
|---|---|
| onpsstopbas | ⊢ On ⊊ TopBases |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsstopbas 36417 | . 2 ⊢ On ⊆ TopBases | |
| 2 | indistop 22889 | . . . 4 ⊢ {∅, {{∅}}} ∈ Top | |
| 3 | topbas 22859 | . . . 4 ⊢ ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, {{∅}}} ∈ TopBases |
| 5 | snex 5391 | . . . . . 6 ⊢ {{∅}} ∈ V | |
| 6 | 5 | prid2 4727 | . . . . 5 ⊢ {{∅}} ∈ {∅, {{∅}}} |
| 7 | snsn0non 6459 | . . . . 5 ⊢ ¬ {{∅}} ∈ On | |
| 8 | jcn 162 | . . . . 5 ⊢ ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))) | |
| 9 | 6, 7, 8 | mp2 9 | . . . 4 ⊢ ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On) |
| 10 | onelon 6357 | . . . . 5 ⊢ (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On) | |
| 11 | 10 | ex 412 | . . . 4 ⊢ ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)) |
| 12 | 9, 11 | mto 197 | . . 3 ⊢ ¬ {∅, {{∅}}} ∈ On |
| 13 | 4, 12 | pm3.2i 470 | . 2 ⊢ ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) |
| 14 | ssnelpss 4077 | . 2 ⊢ (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases)) | |
| 15 | 1, 13, 14 | mp2 9 | 1 ⊢ On ⊊ TopBases |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 ⊊ wpss 3915 ∅c0 4296 {csn 4589 {cpr 4591 Oncon0 6332 Topctop 22780 TopBasesctb 22832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-ord 6335 df-on 6336 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-topon 22798 df-bases 22833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |