![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onpsstopbas | Structured version Visualization version GIF version |
Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.) |
Ref | Expression |
---|---|
onpsstopbas | ⊢ On ⊊ TopBases |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsstopbas 36395 | . 2 ⊢ On ⊆ TopBases | |
2 | indistop 23030 | . . . 4 ⊢ {∅, {{∅}}} ∈ Top | |
3 | topbas 23000 | . . . 4 ⊢ ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, {{∅}}} ∈ TopBases |
5 | snex 5451 | . . . . . 6 ⊢ {{∅}} ∈ V | |
6 | 5 | prid2 4788 | . . . . 5 ⊢ {{∅}} ∈ {∅, {{∅}}} |
7 | snsn0non 6520 | . . . . 5 ⊢ ¬ {{∅}} ∈ On | |
8 | jcn 162 | . . . . 5 ⊢ ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))) | |
9 | 6, 7, 8 | mp2 9 | . . . 4 ⊢ ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On) |
10 | onelon 6420 | . . . . 5 ⊢ (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On) | |
11 | 10 | ex 412 | . . . 4 ⊢ ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)) |
12 | 9, 11 | mto 197 | . . 3 ⊢ ¬ {∅, {{∅}}} ∈ On |
13 | 4, 12 | pm3.2i 470 | . 2 ⊢ ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) |
14 | ssnelpss 4137 | . 2 ⊢ (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases)) | |
15 | 1, 13, 14 | mp2 9 | 1 ⊢ On ⊊ TopBases |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3976 ⊊ wpss 3977 ∅c0 4352 {csn 4648 {cpr 4650 Oncon0 6395 Topctop 22920 TopBasesctb 22973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fv 6581 df-top 22921 df-topon 22938 df-bases 22974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |