Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onpsstopbas Structured version   Visualization version   GIF version

Theorem onpsstopbas 36431
Description: The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.)
Assertion
Ref Expression
onpsstopbas On ⊊ TopBases

Proof of Theorem onpsstopbas
StepHypRef Expression
1 onsstopbas 36430 . 2 On ⊆ TopBases
2 indistop 23009 . . . 4 {∅, {{∅}}} ∈ Top
3 topbas 22979 . . . 4 ({∅, {{∅}}} ∈ Top → {∅, {{∅}}} ∈ TopBases)
42, 3ax-mp 5 . . 3 {∅, {{∅}}} ∈ TopBases
5 snex 5436 . . . . . 6 {{∅}} ∈ V
65prid2 4763 . . . . 5 {{∅}} ∈ {∅, {{∅}}}
7 snsn0non 6509 . . . . 5 ¬ {{∅}} ∈ On
8 jcn 162 . . . . 5 ({{∅}} ∈ {∅, {{∅}}} → (¬ {{∅}} ∈ On → ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)))
96, 7, 8mp2 9 . . . 4 ¬ ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On)
10 onelon 6409 . . . . 5 (({∅, {{∅}}} ∈ On ∧ {{∅}} ∈ {∅, {{∅}}}) → {{∅}} ∈ On)
1110ex 412 . . . 4 ({∅, {{∅}}} ∈ On → ({{∅}} ∈ {∅, {{∅}}} → {{∅}} ∈ On))
129, 11mto 197 . . 3 ¬ {∅, {{∅}}} ∈ On
134, 12pm3.2i 470 . 2 ({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On)
14 ssnelpss 4114 . 2 (On ⊆ TopBases → (({∅, {{∅}}} ∈ TopBases ∧ ¬ {∅, {{∅}}} ∈ On) → On ⊊ TopBases))
151, 13, 14mp2 9 1 On ⊊ TopBases
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wss 3951  wpss 3952  c0 4333  {csn 4626  {cpr 4628  Oncon0 6384  Topctop 22899  TopBasesctb 22952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-ord 6387  df-on 6388  df-iota 6514  df-fun 6563  df-fv 6569  df-top 22900  df-topon 22917  df-bases 22953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator