Proof of Theorem meran1
Step | Hyp | Ref
| Expression |
1 | | orc 863 |
. . . . . 6
⊢ (¬
𝜑 → (¬ 𝜑 ∨ 𝜓)) |
2 | | olc 864 |
. . . . . 6
⊢ (𝜓 → (¬ 𝜑 ∨ 𝜓)) |
3 | 1, 2 | ja 186 |
. . . . 5
⊢ ((𝜑 → 𝜓) → (¬ 𝜑 ∨ 𝜓)) |
4 | 3 | imim1i 63 |
. . . 4
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) → ((𝜑 → 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏)))) |
5 | | pm2.24 124 |
. . . . . 6
⊢ (𝜃 → (¬ 𝜃 → 𝜑)) |
6 | | idd 24 |
. . . . . 6
⊢ (𝜃 → (𝜑 → 𝜑)) |
7 | 5, 6 | jaod 855 |
. . . . 5
⊢ (𝜃 → ((¬ 𝜃 ∨ 𝜑) → 𝜑)) |
8 | 7 | com12 32 |
. . . 4
⊢ ((¬
𝜃 ∨ 𝜑) → (𝜃 → 𝜑)) |
9 | | pm1.5 916 |
. . . . . 6
⊢ ((¬
(𝜑 → 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) → (𝜒 ∨ (¬ (𝜑 → 𝜓) ∨ (𝜃 ∨ 𝜏)))) |
10 | | pm2.3 921 |
. . . . . . . 8
⊢ ((¬
(𝜑 → 𝜓) ∨ (𝜃 ∨ 𝜏)) → (¬ (𝜑 → 𝜓) ∨ (𝜏 ∨ 𝜃))) |
11 | | pm1.5 916 |
. . . . . . . 8
⊢ ((¬
(𝜑 → 𝜓) ∨ (𝜏 ∨ 𝜃)) → (𝜏 ∨ (¬ (𝜑 → 𝜓) ∨ 𝜃))) |
12 | | pm2.21 123 |
. . . . . . . . . . . . 13
⊢ (¬
𝜑 → (𝜑 → 𝜓)) |
13 | | jcn 162 |
. . . . . . . . . . . . 13
⊢ (𝜃 → (¬ 𝜑 → ¬ (𝜃 → 𝜑))) |
14 | 12, 13 | imim12i 62 |
. . . . . . . . . . . 12
⊢ (((𝜑 → 𝜓) → 𝜃) → (¬ 𝜑 → (¬ 𝜑 → ¬ (𝜃 → 𝜑)))) |
15 | 14 | pm2.43d 53 |
. . . . . . . . . . 11
⊢ (((𝜑 → 𝜓) → 𝜃) → (¬ 𝜑 → ¬ (𝜃 → 𝜑))) |
16 | 15 | con4d 115 |
. . . . . . . . . 10
⊢ (((𝜑 → 𝜓) → 𝜃) → ((𝜃 → 𝜑) → 𝜑)) |
17 | | imor 849 |
. . . . . . . . . 10
⊢ (((𝜑 → 𝜓) → 𝜃) ↔ (¬ (𝜑 → 𝜓) ∨ 𝜃)) |
18 | | imor 849 |
. . . . . . . . . 10
⊢ (((𝜃 → 𝜑) → 𝜑) ↔ (¬ (𝜃 → 𝜑) ∨ 𝜑)) |
19 | 16, 17, 18 | 3imtr3i 290 |
. . . . . . . . 9
⊢ ((¬
(𝜑 → 𝜓) ∨ 𝜃) → (¬ (𝜃 → 𝜑) ∨ 𝜑)) |
20 | 19 | orim2i 907 |
. . . . . . . 8
⊢ ((𝜏 ∨ (¬ (𝜑 → 𝜓) ∨ 𝜃)) → (𝜏 ∨ (¬ (𝜃 → 𝜑) ∨ 𝜑))) |
21 | | pm1.5 916 |
. . . . . . . 8
⊢ ((𝜏 ∨ (¬ (𝜃 → 𝜑) ∨ 𝜑)) → (¬ (𝜃 → 𝜑) ∨ (𝜏 ∨ 𝜑))) |
22 | 10, 11, 20, 21 | 4syl 19 |
. . . . . . 7
⊢ ((¬
(𝜑 → 𝜓) ∨ (𝜃 ∨ 𝜏)) → (¬ (𝜃 → 𝜑) ∨ (𝜏 ∨ 𝜑))) |
23 | 22 | orim2i 907 |
. . . . . 6
⊢ ((𝜒 ∨ (¬ (𝜑 → 𝜓) ∨ (𝜃 ∨ 𝜏))) → (𝜒 ∨ (¬ (𝜃 → 𝜑) ∨ (𝜏 ∨ 𝜑)))) |
24 | | pm1.5 916 |
. . . . . 6
⊢ ((𝜒 ∨ (¬ (𝜃 → 𝜑) ∨ (𝜏 ∨ 𝜑))) → (¬ (𝜃 → 𝜑) ∨ (𝜒 ∨ (𝜏 ∨ 𝜑)))) |
25 | 9, 23, 24 | 3syl 18 |
. . . . 5
⊢ ((¬
(𝜑 → 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) → (¬ (𝜃 → 𝜑) ∨ (𝜒 ∨ (𝜏 ∨ 𝜑)))) |
26 | | imor 849 |
. . . . 5
⊢ (((𝜑 → 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) ↔ (¬ (𝜑 → 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏)))) |
27 | | imor 849 |
. . . . 5
⊢ (((𝜃 → 𝜑) → (𝜒 ∨ (𝜏 ∨ 𝜑))) ↔ (¬ (𝜃 → 𝜑) ∨ (𝜒 ∨ (𝜏 ∨ 𝜑)))) |
28 | 25, 26, 27 | 3imtr4i 291 |
. . . 4
⊢ (((𝜑 → 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) → ((𝜃 → 𝜑) → (𝜒 ∨ (𝜏 ∨ 𝜑)))) |
29 | 4, 8, 28 | syl2im 40 |
. . 3
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) → ((¬ 𝜃 ∨ 𝜑) → (𝜒 ∨ (𝜏 ∨ 𝜑)))) |
30 | | imor 849 |
. . 3
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) ↔ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏)))) |
31 | | imor 849 |
. . 3
⊢ (((¬
𝜃 ∨ 𝜑) → (𝜒 ∨ (𝜏 ∨ 𝜑))) ↔ (¬ (¬ 𝜃 ∨ 𝜑) ∨ (𝜒 ∨ (𝜏 ∨ 𝜑)))) |
32 | 29, 30, 31 | 3imtr3i 290 |
. 2
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) → (¬ (¬ 𝜃 ∨ 𝜑) ∨ (𝜒 ∨ (𝜏 ∨ 𝜑)))) |
33 | 32 | imori 850 |
1
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) ∨ (¬ (¬ 𝜃 ∨ 𝜑) ∨ (𝜒 ∨ (𝜏 ∨ 𝜑)))) |