Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-brrelex12ALT Structured version   Visualization version   GIF version

Theorem bj-brrelex12ALT 34797
Description: Two classes related by a binary relation are both sets. Alternate proof of brrelex12 5578. (Contributed by BJ, 14-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-brrelex12ALT ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-brrelex12ALT
StepHypRef Expression
1 0nelrel0 5586 . 2 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
2 jcn 165 . . . 4 (𝐴𝑅𝐵 → (¬ ∅ ∈ 𝑅 → ¬ (𝐴𝑅𝐵 → ∅ ∈ 𝑅)))
32impcom 411 . . 3 ((¬ ∅ ∈ 𝑅𝐴𝑅𝐵) → ¬ (𝐴𝑅𝐵 → ∅ ∈ 𝑅))
4 opprc 4789 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
5 df-br 5037 . . . . . 6 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
65biimpi 219 . . . . 5 (𝐴𝑅𝐵 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
7 eleq1 2839 . . . . 5 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ∅ ∈ 𝑅))
86, 7syl5ib 247 . . . 4 (⟨𝐴, 𝐵⟩ = ∅ → (𝐴𝑅𝐵 → ∅ ∈ 𝑅))
94, 8syl 17 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 → ∅ ∈ 𝑅))
103, 9nsyl2 143 . 2 ((¬ ∅ ∈ 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
111, 10sylan 583 1 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  c0 4227  cop 4531   class class class wbr 5036  Rel wrel 5533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ne 2952  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-xp 5534  df-rel 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator