Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-brrelex12ALT Structured version   Visualization version   GIF version

Theorem bj-brrelex12ALT 36252
Description: Two classes related by a binary relation are both sets. Alternate proof of brrelex12 5728. (Contributed by BJ, 14-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-brrelex12ALT ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem bj-brrelex12ALT
StepHypRef Expression
1 0nelrel0 5736 . 2 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
2 jcn 162 . . . 4 (𝐴𝑅𝐵 → (¬ ∅ ∈ 𝑅 → ¬ (𝐴𝑅𝐵 → ∅ ∈ 𝑅)))
32impcom 407 . . 3 ((¬ ∅ ∈ 𝑅𝐴𝑅𝐵) → ¬ (𝐴𝑅𝐵 → ∅ ∈ 𝑅))
4 opprc 4896 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
5 df-br 5149 . . . . . 6 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
65biimpi 215 . . . . 5 (𝐴𝑅𝐵 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
7 eleq1 2820 . . . . 5 (⟨𝐴, 𝐵⟩ = ∅ → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ∅ ∈ 𝑅))
86, 7imbitrid 243 . . . 4 (⟨𝐴, 𝐵⟩ = ∅ → (𝐴𝑅𝐵 → ∅ ∈ 𝑅))
94, 8syl 17 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 → ∅ ∈ 𝑅))
103, 9nsyl2 141 . 2 ((¬ ∅ ∈ 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
111, 10sylan 579 1 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322  cop 4634   class class class wbr 5148  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator