Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-brrelex12ALT | Structured version Visualization version GIF version |
Description: Two classes related by a binary relation are both sets. Alternate proof of brrelex12 5639. (Contributed by BJ, 14-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-brrelex12ALT | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelrel0 5647 | . 2 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
2 | jcn 162 | . . . 4 ⊢ (𝐴𝑅𝐵 → (¬ ∅ ∈ 𝑅 → ¬ (𝐴𝑅𝐵 → ∅ ∈ 𝑅))) | |
3 | 2 | impcom 408 | . . 3 ⊢ ((¬ ∅ ∈ 𝑅 ∧ 𝐴𝑅𝐵) → ¬ (𝐴𝑅𝐵 → ∅ ∈ 𝑅)) |
4 | opprc 4827 | . . . 4 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
5 | df-br 5075 | . . . . . 6 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
6 | 5 | biimpi 215 | . . . . 5 ⊢ (𝐴𝑅𝐵 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
7 | eleq1 2826 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 = ∅ → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ ∅ ∈ 𝑅)) | |
8 | 6, 7 | syl5ib 243 | . . . 4 ⊢ (〈𝐴, 𝐵〉 = ∅ → (𝐴𝑅𝐵 → ∅ ∈ 𝑅)) |
9 | 4, 8 | syl 17 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 → ∅ ∈ 𝑅)) |
10 | 3, 9 | nsyl2 141 | . 2 ⊢ ((¬ ∅ ∈ 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
11 | 1, 10 | sylan 580 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 〈cop 4567 class class class wbr 5074 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |