| Step | Hyp | Ref
| Expression |
| 1 | | leftssno 27844 |
. . . 4
⊢ ( L
‘𝐴) ⊆ No |
| 2 | | fvex 6889 |
. . . . 5
⊢ ( L
‘𝐴) ∈
V |
| 3 | 2 | elpw 4579 |
. . . 4
⊢ (( L
‘𝐴) ∈ 𝒫
No ↔ ( L ‘𝐴) ⊆ No
) |
| 4 | 1, 3 | mpbir 231 |
. . 3
⊢ ( L
‘𝐴) ∈ 𝒫
No |
| 5 | | onsno 28208 |
. . . . 5
⊢ (𝐴 ∈ Ons →
𝐴 ∈ No ) |
| 6 | | lrcut 27867 |
. . . . 5
⊢ (𝐴 ∈
No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Ons → ((
L ‘𝐴) |s ( R
‘𝐴)) = 𝐴) |
| 8 | | elons 28206 |
. . . . . 6
⊢ (𝐴 ∈ Ons ↔
(𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
| 9 | 8 | simprbi 496 |
. . . . 5
⊢ (𝐴 ∈ Ons → (
R ‘𝐴) =
∅) |
| 10 | 9 | oveq2d 7421 |
. . . 4
⊢ (𝐴 ∈ Ons → ((
L ‘𝐴) |s ( R
‘𝐴)) = (( L
‘𝐴) |s
∅)) |
| 11 | 7, 10 | eqtr3d 2772 |
. . 3
⊢ (𝐴 ∈ Ons →
𝐴 = (( L ‘𝐴) |s ∅)) |
| 12 | | oveq1 7412 |
. . . 4
⊢ (𝑎 = ( L ‘𝐴) → (𝑎 |s ∅) = (( L ‘𝐴) |s ∅)) |
| 13 | 12 | rspceeqv 3624 |
. . 3
⊢ ((( L
‘𝐴) ∈ 𝒫
No ∧ 𝐴 = (( L ‘𝐴) |s ∅)) → ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅)) |
| 14 | 4, 11, 13 | sylancr 587 |
. 2
⊢ (𝐴 ∈ Ons →
∃𝑎 ∈ 𝒫
No 𝐴 = (𝑎 |s ∅)) |
| 15 | | nulssgt 27762 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 No → 𝑎 <<s ∅) |
| 16 | 15 | scutcld 27767 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈ No
) |
| 17 | | eqidd 2736 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) = (𝑎 |s ∅)) |
| 18 | 15, 17 | cofcutr2d 27886 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 No → ∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥) |
| 19 | | rex0 4335 |
. . . . . . . . . 10
⊢ ¬
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥 |
| 20 | | jcn 162 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → (¬
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥 → ¬ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥))) |
| 21 | 19, 20 | mpi 20 |
. . . . . . . . 9
⊢ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ¬
(𝑥 ∈ ( R ‘(𝑎 |s ∅)) →
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥)) |
| 22 | 21 | con2i 139 |
. . . . . . . 8
⊢ ((𝑥 ∈ ( R ‘(𝑎 |s ∅)) →
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥) → ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅))) |
| 23 | 22 | alimi 1811 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) →
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥) → ∀𝑥 ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅))) |
| 24 | | df-ral 3052 |
. . . . . . 7
⊢
(∀𝑥 ∈ (
R ‘(𝑎 |s
∅))∃𝑦 ∈
∅ 𝑦 ≤s 𝑥 ↔ ∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥)) |
| 25 | | eq0 4325 |
. . . . . . 7
⊢ (( R
‘(𝑎 |s ∅)) =
∅ ↔ ∀𝑥
¬ 𝑥 ∈ ( R
‘(𝑎 |s
∅))) |
| 26 | 23, 24, 25 | 3imtr4i 292 |
. . . . . 6
⊢
(∀𝑥 ∈ (
R ‘(𝑎 |s
∅))∃𝑦 ∈
∅ 𝑦 ≤s 𝑥 → ( R ‘(𝑎 |s ∅)) =
∅) |
| 27 | 18, 26 | syl 17 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 No → ( R ‘(𝑎 |s ∅)) = ∅) |
| 28 | | elons 28206 |
. . . . 5
⊢ ((𝑎 |s ∅) ∈
Ons ↔ ((𝑎
|s ∅) ∈ No ∧ ( R ‘(𝑎 |s ∅)) =
∅)) |
| 29 | 16, 27, 28 | sylanbrc 583 |
. . . 4
⊢ (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈
Ons) |
| 30 | | eleq1 2822 |
. . . 4
⊢ (𝐴 = (𝑎 |s ∅) → (𝐴 ∈ Ons ↔ (𝑎 |s ∅) ∈
Ons)) |
| 31 | 29, 30 | syl5ibrcom 247 |
. . 3
⊢ (𝑎 ∈ 𝒫 No → (𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons)) |
| 32 | 31 | rexlimiv 3134 |
. 2
⊢
(∃𝑎 ∈
𝒫 No 𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons) |
| 33 | 14, 32 | impbii 209 |
1
⊢ (𝐴 ∈ Ons ↔
∃𝑎 ∈ 𝒫
No 𝐴 = (𝑎 |s ∅)) |