MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elons2 Structured version   Visualization version   GIF version

Theorem elons2 28159
Description: A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from [Conway] p. 27. (Contributed by Scott Fenton, 19-Mar-2025.)
Assertion
Ref Expression
elons2 (𝐴 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
Distinct variable group:   𝐴,𝑎

Proof of Theorem elons2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leftssno 27792 . . . 4 ( L ‘𝐴) ⊆ No
2 fvex 6871 . . . . 5 ( L ‘𝐴) ∈ V
32elpw 4567 . . . 4 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
41, 3mpbir 231 . . 3 ( L ‘𝐴) ∈ 𝒫 No
5 onsno 28156 . . . . 5 (𝐴 ∈ Ons𝐴 No )
6 lrcut 27815 . . . . 5 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
75, 6syl 17 . . . 4 (𝐴 ∈ Ons → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
8 elons 28154 . . . . . 6 (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))
98simprbi 496 . . . . 5 (𝐴 ∈ Ons → ( R ‘𝐴) = ∅)
109oveq2d 7403 . . . 4 (𝐴 ∈ Ons → (( L ‘𝐴) |s ( R ‘𝐴)) = (( L ‘𝐴) |s ∅))
117, 10eqtr3d 2766 . . 3 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
12 oveq1 7394 . . . 4 (𝑎 = ( L ‘𝐴) → (𝑎 |s ∅) = (( L ‘𝐴) |s ∅))
1312rspceeqv 3611 . . 3 ((( L ‘𝐴) ∈ 𝒫 No 𝐴 = (( L ‘𝐴) |s ∅)) → ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
144, 11, 13sylancr 587 . 2 (𝐴 ∈ Ons → ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
15 nulssgt 27710 . . . . . 6 (𝑎 ∈ 𝒫 No 𝑎 <<s ∅)
1615scutcld 27715 . . . . 5 (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈ No )
17 eqidd 2730 . . . . . . 7 (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) = (𝑎 |s ∅))
1815, 17cofcutr2d 27834 . . . . . 6 (𝑎 ∈ 𝒫 No → ∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥)
19 rex0 4323 . . . . . . . . . 10 ¬ ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥
20 jcn 162 . . . . . . . . . 10 (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → (¬ ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ¬ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥)))
2119, 20mpi 20 . . . . . . . . 9 (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ¬ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥))
2221con2i 139 . . . . . . . 8 ((𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥) → ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅)))
2322alimi 1811 . . . . . . 7 (∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥) → ∀𝑥 ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅)))
24 df-ral 3045 . . . . . . 7 (∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ↔ ∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥))
25 eq0 4313 . . . . . . 7 (( R ‘(𝑎 |s ∅)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅)))
2623, 24, 253imtr4i 292 . . . . . 6 (∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ( R ‘(𝑎 |s ∅)) = ∅)
2718, 26syl 17 . . . . 5 (𝑎 ∈ 𝒫 No → ( R ‘(𝑎 |s ∅)) = ∅)
28 elons 28154 . . . . 5 ((𝑎 |s ∅) ∈ Ons ↔ ((𝑎 |s ∅) ∈ No ∧ ( R ‘(𝑎 |s ∅)) = ∅))
2916, 27, 28sylanbrc 583 . . . 4 (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈ Ons)
30 eleq1 2816 . . . 4 (𝐴 = (𝑎 |s ∅) → (𝐴 ∈ Ons ↔ (𝑎 |s ∅) ∈ Ons))
3129, 30syl5ibrcom 247 . . 3 (𝑎 ∈ 𝒫 No → (𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons))
3231rexlimiv 3127 . 2 (∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons)
3314, 32impbii 209 1 (𝐴 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   ≤s csle 27656   |s cscut 27694   L cleft 27753   R cright 27754  Onscons 28152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-ons 28153
This theorem is referenced by:  elons2d  28160  n0ons  28228
  Copyright terms: Public domain W3C validator