Step | Hyp | Ref
| Expression |
1 | | leftssno 27781 |
. . . 4
⊢ ( L
‘𝐴) ⊆ No |
2 | | fvex 6904 |
. . . . 5
⊢ ( L
‘𝐴) ∈
V |
3 | 2 | elpw 4602 |
. . . 4
⊢ (( L
‘𝐴) ∈ 𝒫
No ↔ ( L ‘𝐴) ⊆ No
) |
4 | 1, 3 | mpbir 230 |
. . 3
⊢ ( L
‘𝐴) ∈ 𝒫
No |
5 | | onsno 28122 |
. . . . 5
⊢ (𝐴 ∈ Ons →
𝐴 ∈ No ) |
6 | | lrcut 27803 |
. . . . 5
⊢ (𝐴 ∈
No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Ons → ((
L ‘𝐴) |s ( R
‘𝐴)) = 𝐴) |
8 | | elons 28120 |
. . . . . 6
⊢ (𝐴 ∈ Ons ↔
(𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
9 | 8 | simprbi 496 |
. . . . 5
⊢ (𝐴 ∈ Ons → (
R ‘𝐴) =
∅) |
10 | 9 | oveq2d 7430 |
. . . 4
⊢ (𝐴 ∈ Ons → ((
L ‘𝐴) |s ( R
‘𝐴)) = (( L
‘𝐴) |s
∅)) |
11 | 7, 10 | eqtr3d 2769 |
. . 3
⊢ (𝐴 ∈ Ons →
𝐴 = (( L ‘𝐴) |s ∅)) |
12 | | oveq1 7421 |
. . . 4
⊢ (𝑎 = ( L ‘𝐴) → (𝑎 |s ∅) = (( L ‘𝐴) |s ∅)) |
13 | 12 | rspceeqv 3629 |
. . 3
⊢ ((( L
‘𝐴) ∈ 𝒫
No ∧ 𝐴 = (( L ‘𝐴) |s ∅)) → ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅)) |
14 | 4, 11, 13 | sylancr 586 |
. 2
⊢ (𝐴 ∈ Ons →
∃𝑎 ∈ 𝒫
No 𝐴 = (𝑎 |s ∅)) |
15 | | nulssgt 27705 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 No → 𝑎 <<s ∅) |
16 | 15 | scutcld 27710 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈ No
) |
17 | | eqidd 2728 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) = (𝑎 |s ∅)) |
18 | 15, 17 | cofcutr2d 27820 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 No → ∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥) |
19 | | rex0 4353 |
. . . . . . . . . 10
⊢ ¬
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥 |
20 | | jcn 162 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → (¬
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥 → ¬ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥))) |
21 | 19, 20 | mpi 20 |
. . . . . . . . 9
⊢ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ¬
(𝑥 ∈ ( R ‘(𝑎 |s ∅)) →
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥)) |
22 | 21 | con2i 139 |
. . . . . . . 8
⊢ ((𝑥 ∈ ( R ‘(𝑎 |s ∅)) →
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥) → ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅))) |
23 | 22 | alimi 1806 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) →
∃𝑦 ∈ ∅
𝑦 ≤s 𝑥) → ∀𝑥 ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅))) |
24 | | df-ral 3057 |
. . . . . . 7
⊢
(∀𝑥 ∈ (
R ‘(𝑎 |s
∅))∃𝑦 ∈
∅ 𝑦 ≤s 𝑥 ↔ ∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥)) |
25 | | eq0 4339 |
. . . . . . 7
⊢ (( R
‘(𝑎 |s ∅)) =
∅ ↔ ∀𝑥
¬ 𝑥 ∈ ( R
‘(𝑎 |s
∅))) |
26 | 23, 24, 25 | 3imtr4i 292 |
. . . . . 6
⊢
(∀𝑥 ∈ (
R ‘(𝑎 |s
∅))∃𝑦 ∈
∅ 𝑦 ≤s 𝑥 → ( R ‘(𝑎 |s ∅)) =
∅) |
27 | 18, 26 | syl 17 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 No → ( R ‘(𝑎 |s ∅)) = ∅) |
28 | | elons 28120 |
. . . . 5
⊢ ((𝑎 |s ∅) ∈
Ons ↔ ((𝑎
|s ∅) ∈ No ∧ ( R ‘(𝑎 |s ∅)) =
∅)) |
29 | 16, 27, 28 | sylanbrc 582 |
. . . 4
⊢ (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈
Ons) |
30 | | eleq1 2816 |
. . . 4
⊢ (𝐴 = (𝑎 |s ∅) → (𝐴 ∈ Ons ↔ (𝑎 |s ∅) ∈
Ons)) |
31 | 29, 30 | syl5ibrcom 246 |
. . 3
⊢ (𝑎 ∈ 𝒫 No → (𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons)) |
32 | 31 | rexlimiv 3143 |
. 2
⊢
(∃𝑎 ∈
𝒫 No 𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons) |
33 | 14, 32 | impbii 208 |
1
⊢ (𝐴 ∈ Ons ↔
∃𝑎 ∈ 𝒫
No 𝐴 = (𝑎 |s ∅)) |