Step | Hyp | Ref
| Expression |
1 | | leftssno 27612 |
. . . 4
âĒ ( L
âðī) â No |
2 | | fvex 6903 |
. . . . 5
âĒ ( L
âðī) â
V |
3 | 2 | elpw 4605 |
. . . 4
âĒ (( L
âðī) â ðŦ
No â ( L âðī) â No
) |
4 | 1, 3 | mpbir 230 |
. . 3
âĒ ( L
âðī) â ðŦ
No |
5 | | onsno 27921 |
. . . . 5
âĒ (ðī â Ons â
ðī â No ) |
6 | | lrcut 27634 |
. . . . 5
âĒ (ðī â
No â (( L âðī) |s ( R âðī)) = ðī) |
7 | 5, 6 | syl 17 |
. . . 4
âĒ (ðī â Ons â ((
L âðī) |s ( R
âðī)) = ðī) |
8 | | elons 27919 |
. . . . . 6
âĒ (ðī â Ons â
(ðī â No ⧠( R âðī) = â
)) |
9 | 8 | simprbi 495 |
. . . . 5
âĒ (ðī â Ons â (
R âðī) =
â
) |
10 | 9 | oveq2d 7427 |
. . . 4
âĒ (ðī â Ons â ((
L âðī) |s ( R
âðī)) = (( L
âðī) |s
â
)) |
11 | 7, 10 | eqtr3d 2772 |
. . 3
âĒ (ðī â Ons â
ðī = (( L âðī) |s â
)) |
12 | | oveq1 7418 |
. . . 4
âĒ (ð = ( L âðī) â (ð |s â
) = (( L âðī) |s â
)) |
13 | 12 | rspceeqv 3632 |
. . 3
âĒ ((( L
âðī) â ðŦ
No ⧠ðī = (( L âðī) |s â
)) â âð â ðŦ No ðī = (ð |s â
)) |
14 | 4, 11, 13 | sylancr 585 |
. 2
âĒ (ðī â Ons â
âð â ðŦ
No ðī = (ð |s â
)) |
15 | | nulssgt 27536 |
. . . . . 6
âĒ (ð â ðŦ No â ð <<s â
) |
16 | 15 | scutcld 27541 |
. . . . 5
âĒ (ð â ðŦ No â (ð |s â
) â No
) |
17 | | eqidd 2731 |
. . . . . . 7
âĒ (ð â ðŦ No â (ð |s â
) = (ð |s â
)) |
18 | 15, 17 | cofcutr2d 27651 |
. . . . . 6
âĒ (ð â ðŦ No â âðĨ â ( R â(ð |s â
))âðĶ â â
ðĶ âĪs ðĨ) |
19 | | rex0 4356 |
. . . . . . . . . 10
âĒ ÂŽ
âðĶ â â
ðĶ âĪs ðĨ |
20 | | jcn 162 |
. . . . . . . . . 10
âĒ (ðĨ â ( R â(ð |s â
)) â (ÂŽ
âðĶ â â
ðĶ âĪs ðĨ â ÂŽ (ðĨ â ( R â(ð |s â
)) â âðĶ â â
ðĶ âĪs ðĨ))) |
21 | 19, 20 | mpi 20 |
. . . . . . . . 9
âĒ (ðĨ â ( R â(ð |s â
)) â ÂŽ
(ðĨ â ( R â(ð |s â
)) â
âðĶ â â
ðĶ âĪs ðĨ)) |
22 | 21 | con2i 139 |
. . . . . . . 8
âĒ ((ðĨ â ( R â(ð |s â
)) â
âðĶ â â
ðĶ âĪs ðĨ) â ÂŽ ðĨ â ( R â(ð |s â
))) |
23 | 22 | alimi 1811 |
. . . . . . 7
âĒ
(âðĨ(ðĨ â ( R â(ð |s â
)) â
âðĶ â â
ðĶ âĪs ðĨ) â âðĨ ÂŽ ðĨ â ( R â(ð |s â
))) |
24 | | df-ral 3060 |
. . . . . . 7
âĒ
(âðĨ â (
R â(ð |s
â
))âðĶ â
â
ðĶ âĪs ðĨ â âðĨ(ðĨ â ( R â(ð |s â
)) â âðĶ â â
ðĶ âĪs ðĨ)) |
25 | | eq0 4342 |
. . . . . . 7
âĒ (( R
â(ð |s â
)) =
â
â âðĨ
ÂŽ ðĨ â ( R
â(ð |s
â
))) |
26 | 23, 24, 25 | 3imtr4i 291 |
. . . . . 6
âĒ
(âðĨ â (
R â(ð |s
â
))âðĶ â
â
ðĶ âĪs ðĨ â ( R â(ð |s â
)) =
â
) |
27 | 18, 26 | syl 17 |
. . . . 5
âĒ (ð â ðŦ No â ( R â(ð |s â
)) = â
) |
28 | | elons 27919 |
. . . . 5
âĒ ((ð |s â
) â
Ons â ((ð
|s â
) â No ⧠( R â(ð |s â
)) =
â
)) |
29 | 16, 27, 28 | sylanbrc 581 |
. . . 4
âĒ (ð â ðŦ No â (ð |s â
) â
Ons) |
30 | | eleq1 2819 |
. . . 4
âĒ (ðī = (ð |s â
) â (ðī â Ons â (ð |s â
) â
Ons)) |
31 | 29, 30 | syl5ibrcom 246 |
. . 3
âĒ (ð â ðŦ No â (ðī = (ð |s â
) â ðī â Ons)) |
32 | 31 | rexlimiv 3146 |
. 2
âĒ
(âð â
ðŦ No ðī = (ð |s â
) â ðī â Ons) |
33 | 14, 32 | impbii 208 |
1
âĒ (ðī â Ons â
âð â ðŦ
No ðī = (ð |s â
)) |