MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elons2 Structured version   Visualization version   GIF version

Theorem elons2 28195
Description: A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from [Conway] p. 27. (Contributed by Scott Fenton, 19-Mar-2025.)
Assertion
Ref Expression
elons2 (𝐴 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
Distinct variable group:   𝐴,𝑎

Proof of Theorem elons2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leftssno 27826 . . . 4 ( L ‘𝐴) ⊆ No
2 fvex 6835 . . . . 5 ( L ‘𝐴) ∈ V
32elpw 4551 . . . 4 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
41, 3mpbir 231 . . 3 ( L ‘𝐴) ∈ 𝒫 No
5 onsno 28192 . . . . 5 (𝐴 ∈ Ons𝐴 No )
6 lrcut 27849 . . . . 5 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
75, 6syl 17 . . . 4 (𝐴 ∈ Ons → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
8 elons 28190 . . . . . 6 (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))
98simprbi 496 . . . . 5 (𝐴 ∈ Ons → ( R ‘𝐴) = ∅)
109oveq2d 7362 . . . 4 (𝐴 ∈ Ons → (( L ‘𝐴) |s ( R ‘𝐴)) = (( L ‘𝐴) |s ∅))
117, 10eqtr3d 2768 . . 3 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
12 oveq1 7353 . . . 4 (𝑎 = ( L ‘𝐴) → (𝑎 |s ∅) = (( L ‘𝐴) |s ∅))
1312rspceeqv 3595 . . 3 ((( L ‘𝐴) ∈ 𝒫 No 𝐴 = (( L ‘𝐴) |s ∅)) → ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
144, 11, 13sylancr 587 . 2 (𝐴 ∈ Ons → ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
15 nulssgt 27739 . . . . . 6 (𝑎 ∈ 𝒫 No 𝑎 <<s ∅)
1615scutcld 27744 . . . . 5 (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈ No )
17 eqidd 2732 . . . . . . 7 (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) = (𝑎 |s ∅))
1815, 17cofcutr2d 27870 . . . . . 6 (𝑎 ∈ 𝒫 No → ∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥)
19 rex0 4307 . . . . . . . . . 10 ¬ ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥
20 jcn 162 . . . . . . . . . 10 (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → (¬ ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ¬ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥)))
2119, 20mpi 20 . . . . . . . . 9 (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ¬ (𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥))
2221con2i 139 . . . . . . . 8 ((𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥) → ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅)))
2322alimi 1812 . . . . . . 7 (∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥) → ∀𝑥 ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅)))
24 df-ral 3048 . . . . . . 7 (∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ↔ ∀𝑥(𝑥 ∈ ( R ‘(𝑎 |s ∅)) → ∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥))
25 eq0 4297 . . . . . . 7 (( R ‘(𝑎 |s ∅)) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ ( R ‘(𝑎 |s ∅)))
2623, 24, 253imtr4i 292 . . . . . 6 (∀𝑥 ∈ ( R ‘(𝑎 |s ∅))∃𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ( R ‘(𝑎 |s ∅)) = ∅)
2718, 26syl 17 . . . . 5 (𝑎 ∈ 𝒫 No → ( R ‘(𝑎 |s ∅)) = ∅)
28 elons 28190 . . . . 5 ((𝑎 |s ∅) ∈ Ons ↔ ((𝑎 |s ∅) ∈ No ∧ ( R ‘(𝑎 |s ∅)) = ∅))
2916, 27, 28sylanbrc 583 . . . 4 (𝑎 ∈ 𝒫 No → (𝑎 |s ∅) ∈ Ons)
30 eleq1 2819 . . . 4 (𝐴 = (𝑎 |s ∅) → (𝐴 ∈ Ons ↔ (𝑎 |s ∅) ∈ Ons))
3129, 30syl5ibrcom 247 . . 3 (𝑎 ∈ 𝒫 No → (𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons))
3231rexlimiv 3126 . 2 (∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅) → 𝐴 ∈ Ons)
3314, 32impbii 209 1 (𝐴 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝐴 = (𝑎 |s ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  c0 4280  𝒫 cpw 4547   class class class wbr 5089  cfv 6481  (class class class)co 7346   No csur 27578   ≤s csle 27683   |s cscut 27722   L cleft 27786   R cright 27787  Onscons 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-ons 28189
This theorem is referenced by:  elons2d  28196  n0ons  28264
  Copyright terms: Public domain W3C validator