Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm4.71da Structured version   Visualization version   GIF version

Theorem pm4.71da 46023
Description: Deduction converting a biconditional to a biconditional with conjunction. Variant of pm4.71d 561. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypothesis
Ref Expression
pm4.71da.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
pm4.71da (𝜑 → (𝜓 ↔ (𝜓𝜒)))

Proof of Theorem pm4.71da
StepHypRef Expression
1 pm4.71da.1 . . 3 (𝜑 → (𝜓𝜒))
21biimpd 228 . 2 (𝜑 → (𝜓𝜒))
32pm4.71d 561 1 (𝜑 → (𝜓 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  logic2  46026
  Copyright terms: Public domain W3C validator