| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
| Ref | Expression |
|---|---|
| pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 803 sbiedvw 2098 sbiedw 2317 dvelimdf 2449 sbied 2503 2mosOLD 2645 cbvraldva2 3314 csbie2df 4393 dfiin2g 4981 oneqmini 6359 tfindsg 7791 findsg 7827 brecop 8734 dom2lem 8914 indpi 10795 nn0ind-raph 12570 cncls2 23186 ismbl2 25453 voliunlem3 25478 mdbr2 32271 dmdbr2 32278 mdsl2i 32297 mdsl2bi 32298 sgn3da 32812 wl-dral1d 37564 wl-equsald 37572 wl-equsaldv 37573 cvlsupr3 39382 cdleme32fva 40475 cdlemk33N 40947 cdlemk34 40948 ralbidar 44476 logic1 48821 tfis2d 49711 |
| Copyright terms: Public domain | W3C validator |