|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) | 
| Ref | Expression | 
|---|---|
| pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | 
| Ref | Expression | 
|---|---|
| pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 804 sbiedvw 2095 sbiedw 2316 dvelimdf 2454 sbied 2508 2mosOLD 2650 cbvraldva2 3348 csbie2df 4443 dfiin2g 5032 oneqmini 6436 tfindsg 7882 findsg 7919 brecop 8850 dom2lem 9032 indpi 10947 nn0ind-raph 12718 cncls2 23281 ismbl2 25562 voliunlem3 25587 mdbr2 32315 dmdbr2 32322 mdsl2i 32341 mdsl2bi 32342 sgn3da 34544 wl-dral1d 37532 wl-equsald 37540 wl-equsaldv 37541 cvlsupr3 39345 cdleme32fva 40439 cdlemk33N 40911 cdlemk34 40912 ralbidar 44464 logic1 48711 tfis2d 49199 | 
| Copyright terms: Public domain | W3C validator |