Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
Ref | Expression |
---|---|
pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.74 269 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 800 sbiedvw 2098 sbiedw 2313 sbiedwOLD 2314 cbval2vOLD 2343 dvelimdf 2449 sbied 2507 2mos 2651 cbvraldva2 3381 csbie2df 4371 dfiin2g 4958 oneqmini 6302 tfindsg 7682 findsg 7720 brecop 8557 dom2lem 8735 indpi 10594 nn0ind-raph 12350 cncls2 22332 ismbl2 24596 voliunlem3 24621 mdbr2 30559 dmdbr2 30566 mdsl2i 30585 mdsl2bi 30586 sgn3da 32408 wl-dral1d 35617 wl-equsald 35625 cvlsupr3 37285 cdleme32fva 38378 cdlemk33N 38850 cdlemk34 38851 ralbidar 41952 logic1 46024 tfis2d 46272 |
Copyright terms: Public domain | W3C validator |