![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
Ref | Expression |
---|---|
pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.74 270 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 803 sbiedvw 2095 sbiedw 2320 dvelimdf 2457 sbied 2511 2mosOLD 2653 cbvraldva2 3356 csbie2df 4466 dfiin2g 5055 oneqmini 6447 tfindsg 7898 findsg 7937 brecop 8868 dom2lem 9052 indpi 10976 nn0ind-raph 12743 cncls2 23302 ismbl2 25581 voliunlem3 25606 mdbr2 32328 dmdbr2 32335 mdsl2i 32354 mdsl2bi 32355 sgn3da 34506 wl-dral1d 37485 wl-equsald 37493 wl-equsaldv 37494 cvlsupr3 39300 cdleme32fva 40394 cdlemk33N 40866 cdlemk34 40867 ralbidar 44414 logic1 48524 tfis2d 48772 |
Copyright terms: Public domain | W3C validator |