Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
Ref | Expression |
---|---|
pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.74 269 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: imbi2d 341 imim21b 395 pm5.74da 801 sbiedvw 2096 sbiedw 2310 cbval2vOLD 2341 dvelimdf 2449 sbied 2507 2mos 2651 cbvraldva2 3392 csbie2df 4374 dfiin2g 4962 oneqmini 6317 tfindsg 7707 findsg 7746 brecop 8599 dom2lem 8780 indpi 10663 nn0ind-raph 12420 cncls2 22424 ismbl2 24691 voliunlem3 24716 mdbr2 30658 dmdbr2 30665 mdsl2i 30684 mdsl2bi 30685 sgn3da 32508 wl-dral1d 35690 wl-equsald 35698 cvlsupr3 37358 cdleme32fva 38451 cdlemk33N 38923 cdlemk34 38924 ralbidar 42063 logic1 46136 tfis2d 46386 |
Copyright terms: Public domain | W3C validator |