| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
| Ref | Expression |
|---|---|
| pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 803 sbiedvw 2100 sbiedw 2319 dvelimdf 2451 sbied 2505 2mosOLD 2647 cbvraldva2 3315 csbie2df 4392 dfiin2g 4981 oneqmini 6364 tfindsg 7797 findsg 7833 brecop 8740 dom2lem 8921 indpi 10805 nn0ind-raph 12579 cncls2 23189 ismbl2 25456 voliunlem3 25481 mdbr2 32278 dmdbr2 32285 mdsl2i 32304 mdsl2bi 32305 sgn3da 32822 wl-dral1d 37596 wl-equsald 37604 wl-equsaldv 37605 cvlsupr3 39463 cdleme32fva 40556 cdlemk33N 41028 cdlemk34 41029 ralbidar 44561 logic1 48915 tfis2d 49805 |
| Copyright terms: Public domain | W3C validator |