| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
| Ref | Expression |
|---|---|
| pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 803 sbiedvw 2096 sbiedw 2315 dvelimdf 2448 sbied 2502 2mosOLD 2644 cbvraldva2 3323 csbie2df 4409 dfiin2g 4999 oneqmini 6388 tfindsg 7840 findsg 7876 brecop 8786 dom2lem 8966 indpi 10867 nn0ind-raph 12641 cncls2 23167 ismbl2 25435 voliunlem3 25460 mdbr2 32232 dmdbr2 32239 mdsl2i 32258 mdsl2bi 32259 sgn3da 32766 wl-dral1d 37526 wl-equsald 37534 wl-equsaldv 37535 cvlsupr3 39344 cdleme32fva 40438 cdlemk33N 40910 cdlemk34 40911 ralbidar 44441 logic1 48783 tfis2d 49673 |
| Copyright terms: Public domain | W3C validator |