| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
| Ref | Expression |
|---|---|
| pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 803 sbiedvw 2095 sbiedw 2316 dvelimdf 2453 sbied 2507 2mosOLD 2649 cbvraldva2 3327 csbie2df 4418 dfiin2g 5008 oneqmini 6405 tfindsg 7856 findsg 7893 brecop 8824 dom2lem 9006 indpi 10921 nn0ind-raph 12693 cncls2 23211 ismbl2 25480 voliunlem3 25505 mdbr2 32277 dmdbr2 32284 mdsl2i 32303 mdsl2bi 32304 sgn3da 32813 wl-dral1d 37549 wl-equsald 37557 wl-equsaldv 37558 cvlsupr3 39362 cdleme32fva 40456 cdlemk33N 40928 cdlemk34 40929 ralbidar 44469 logic1 48770 tfis2d 49544 |
| Copyright terms: Public domain | W3C validator |