| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 21-Mar-1996.) |
| Ref | Expression |
|---|---|
| pm5.74d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.74d | ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imbi2d 340 imim21b 394 pm5.74da 803 sbiedvw 2096 sbiedw 2315 dvelimdf 2447 sbied 2501 2mosOLD 2643 cbvraldva2 3321 csbie2df 4406 dfiin2g 4996 oneqmini 6385 tfindsg 7837 findsg 7873 brecop 8783 dom2lem 8963 indpi 10860 nn0ind-raph 12634 cncls2 23160 ismbl2 25428 voliunlem3 25453 mdbr2 32225 dmdbr2 32232 mdsl2i 32251 mdsl2bi 32252 sgn3da 32759 wl-dral1d 37519 wl-equsald 37527 wl-equsaldv 37528 cvlsupr3 39337 cdleme32fva 40431 cdlemk33N 40903 cdlemk34 40904 ralbidar 44434 logic1 48779 tfis2d 49669 |
| Copyright terms: Public domain | W3C validator |