Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meran2 Structured version   Visualization version   GIF version

Theorem meran2 34601
Description: A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
Assertion
Ref Expression
meran2 (¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜏𝜃) ∨ (𝜒 ∨ (𝜑𝜃))))

Proof of Theorem meran2
StepHypRef Expression
1 meran1 34600 . . . 4 (¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜃𝜑) ∨ (𝜒 ∨ (𝜏𝜑))))
21imorri 852 . . 3 ((¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) → (¬ (¬ 𝜃𝜑) ∨ (𝜒 ∨ (𝜏𝜑))))
3 meran1 34600 . . . 4 (¬ (¬ (¬ 𝜃𝜑) ∨ (𝜒 ∨ (𝜏𝜑))) ∨ (¬ (¬ 𝜏𝜃) ∨ (𝜒 ∨ (𝜑𝜃))))
43imorri 852 . . 3 ((¬ (¬ 𝜃𝜑) ∨ (𝜒 ∨ (𝜏𝜑))) → (¬ (¬ 𝜏𝜃) ∨ (𝜒 ∨ (𝜑𝜃))))
52, 4syl 17 . 2 ((¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) → (¬ (¬ 𝜏𝜃) ∨ (𝜒 ∨ (𝜑𝜃))))
65imori 851 1 (¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜏𝜃) ∨ (𝜒 ∨ (𝜑𝜃))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator