Proof of Theorem meran3
Step | Hyp | Ref
| Expression |
1 | | pm2.3 922 |
. . . . . 6
⊢ ((𝜒 ∨ (𝜃 ∨ 𝜏)) → (𝜒 ∨ (𝜏 ∨ 𝜃))) |
2 | 1 | imim2i 16 |
. . . . 5
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) → ((¬ 𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜏 ∨ 𝜃)))) |
3 | | pm1.5 917 |
. . . . 5
⊢ ((𝜒 ∨ (𝜏 ∨ 𝜃)) → (𝜏 ∨ (𝜒 ∨ 𝜃))) |
4 | 2, 3 | syl6 35 |
. . . 4
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) → ((¬ 𝜑 ∨ 𝜓) → (𝜏 ∨ (𝜒 ∨ 𝜃)))) |
5 | | imor 850 |
. . . 4
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) ↔ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏)))) |
6 | | imor 850 |
. . . 4
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜏 ∨ (𝜒 ∨ 𝜃))) ↔ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃)))) |
7 | 4, 5, 6 | 3imtr3i 291 |
. . 3
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) → (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃)))) |
8 | | meran1 34600 |
. . . 4
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃))) ∨ (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) |
9 | 8 | imorri 852 |
. . 3
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃))) → (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) |
10 | 7, 9 | syl 17 |
. 2
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) → (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) |
11 | 10 | imori 851 |
1
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) ∨ (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) |