Proof of Theorem meran3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pm2.3 925 | . . . . . 6
⊢ ((𝜒 ∨ (𝜃 ∨ 𝜏)) → (𝜒 ∨ (𝜏 ∨ 𝜃))) | 
| 2 | 1 | imim2i 16 | . . . . 5
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) → ((¬ 𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜏 ∨ 𝜃)))) | 
| 3 |  | pm1.5 920 | . . . . 5
⊢ ((𝜒 ∨ (𝜏 ∨ 𝜃)) → (𝜏 ∨ (𝜒 ∨ 𝜃))) | 
| 4 | 2, 3 | syl6 35 | . . . 4
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) → ((¬ 𝜑 ∨ 𝜓) → (𝜏 ∨ (𝜒 ∨ 𝜃)))) | 
| 5 |  | imor 854 | . . . 4
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜒 ∨ (𝜃 ∨ 𝜏))) ↔ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏)))) | 
| 6 |  | imor 854 | . . . 4
⊢ (((¬
𝜑 ∨ 𝜓) → (𝜏 ∨ (𝜒 ∨ 𝜃))) ↔ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃)))) | 
| 7 | 4, 5, 6 | 3imtr3i 291 | . . 3
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) → (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃)))) | 
| 8 |  | meran1 36412 | . . . 4
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃))) ∨ (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) | 
| 9 | 8 | imorri 856 | . . 3
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ (𝜏 ∨ (𝜒 ∨ 𝜃))) → (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) | 
| 10 | 7, 9 | syl 17 | . 2
⊢ ((¬
(¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) → (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) | 
| 11 | 10 | imori 855 | 1
⊢ (¬
(¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) ∨ (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) |