Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imorri | Structured version Visualization version GIF version |
Description: Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
imorri.1 | ⊢ (¬ 𝜑 ∨ 𝜓) |
Ref | Expression |
---|---|
imorri | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imorri.1 | . 2 ⊢ (¬ 𝜑 ∨ 𝜓) | |
2 | imor 850 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: anmp 1754 meran2 34601 meran3 34602 |
Copyright terms: Public domain | W3C validator |