Proof of Theorem merco1lem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | merco1lem2 1716 | . . 3
⊢ (((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) →
⊥)) | 
| 2 |  | retbwax2 1715 | . . . 4
⊢ ((((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)) → (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) | 
| 3 |  | merco1lem2 1716 | . . . 4
⊢
(((((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)) → (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → ⊥)) →
(𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))))) | 
| 4 | 2, 3 | ax-mp 5 | . . 3
⊢ ((((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → ⊥)) →
(𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) | 
| 5 | 1, 4 | ax-mp 5 | . 2
⊢ (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) | 
| 6 |  | merco1lem2 1716 | . . 3
⊢ (((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) →
⊥)) | 
| 7 |  | retbwax2 1715 | . . . 4
⊢ ((((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) → ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) | 
| 8 |  | merco1lem2 1716 | . . . 4
⊢
(((((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) → ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) → ((((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → ⊥)) →
((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑))))) | 
| 9 | 7, 8 | ax-mp 5 | . . 3
⊢ ((((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → ⊥)) →
((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) | 
| 10 | 6, 9 | ax-mp 5 | . 2
⊢ ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑))) | 
| 11 | 5, 10 | ax-mp 5 | 1
⊢ (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) |