Proof of Theorem merco1lem3
Step | Hyp | Ref
| Expression |
1 | | merco1lem2 1725 |
. . 3
⊢ (((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) →
⊥)) |
2 | | retbwax2 1724 |
. . . 4
⊢ ((((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)) → (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) |
3 | | merco1lem2 1725 |
. . . 4
⊢
(((((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)) → (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → ⊥)) →
(𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → ⊥)) →
(𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) |
5 | 1, 4 | ax-mp 5 |
. 2
⊢ (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) |
6 | | merco1lem2 1725 |
. . 3
⊢ (((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) →
⊥)) |
7 | | retbwax2 1724 |
. . . 4
⊢ ((((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) → ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) |
8 | | merco1lem2 1725 |
. . . 4
⊢
(((((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) → ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) → ((((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → ⊥)) →
((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑))))) |
9 | 7, 8 | ax-mp 5 |
. . 3
⊢ ((((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → ⊥)) →
((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) |
10 | 6, 9 | ax-mp 5 |
. 2
⊢ ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑))) |
11 | 5, 10 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) |