Proof of Theorem merco1lem3
| Step | Hyp | Ref
| Expression |
| 1 | | merco1lem2 1717 |
. . 3
⊢ (((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) →
⊥)) |
| 2 | | retbwax2 1716 |
. . . 4
⊢ ((((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)) → (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) |
| 3 | | merco1lem2 1717 |
. . . 4
⊢
(((((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)) → (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) → ((((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → ⊥)) →
(𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))))) |
| 4 | 2, 3 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → 𝜑) → ⊥) → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → ⊥)) →
(𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑)))) |
| 5 | 1, 4 | ax-mp 5 |
. 2
⊢ (𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) |
| 6 | | merco1lem2 1717 |
. . 3
⊢ (((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) →
⊥)) |
| 7 | | retbwax2 1716 |
. . . 4
⊢ ((((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) → ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) |
| 8 | | merco1lem2 1717 |
. . . 4
⊢
(((((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) → ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) → ((((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → ⊥)) →
((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑))))) |
| 9 | 7, 8 | ax-mp 5 |
. . 3
⊢ ((((𝜒 → 𝜑) → ⊥) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → ⊥)) →
((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)))) |
| 10 | 6, 9 | ax-mp 5 |
. 2
⊢ ((𝜑 → (((𝜑 → 𝜑) → (𝜑 → ⊥)) → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑))) |
| 11 | 5, 10 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → (𝜒 → ⊥)) → (𝜒 → 𝜑)) |