MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpsyl4anc Structured version   Visualization version   GIF version

Theorem mpsyl4anc 838
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
mpsyl4anc.1 𝜑
mpsyl4anc.2 𝜓
mpsyl4anc.3 𝜒
mpsyl4anc.4 (𝜃𝜏)
mpsyl4anc.5 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
mpsyl4anc (𝜃𝜂)

Proof of Theorem mpsyl4anc
StepHypRef Expression
1 mpsyl4anc.1 . . 3 𝜑
21a1i 11 . 2 (𝜃𝜑)
3 mpsyl4anc.2 . . 3 𝜓
43a1i 11 . 2 (𝜃𝜓)
5 mpsyl4anc.3 . . 3 𝜒
65a1i 11 . 2 (𝜃𝜒)
7 mpsyl4anc.4 . 2 (𝜃𝜏)
8 mpsyl4anc.5 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂)
92, 4, 6, 7, 8syl1111anc 836 1 (𝜃𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  inlinecirc02plem  46020
  Copyright terms: Public domain W3C validator