Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpsyl4anc | Structured version Visualization version GIF version |
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
mpsyl4anc.1 | ⊢ 𝜑 |
mpsyl4anc.2 | ⊢ 𝜓 |
mpsyl4anc.3 | ⊢ 𝜒 |
mpsyl4anc.4 | ⊢ (𝜃 → 𝜏) |
mpsyl4anc.5 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
mpsyl4anc | ⊢ (𝜃 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsyl4anc.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜃 → 𝜑) |
3 | mpsyl4anc.2 | . . 3 ⊢ 𝜓 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜃 → 𝜓) |
5 | mpsyl4anc.3 | . . 3 ⊢ 𝜒 | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜃 → 𝜒) |
7 | mpsyl4anc.4 | . 2 ⊢ (𝜃 → 𝜏) | |
8 | mpsyl4anc.5 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂) | |
9 | 2, 4, 6, 7, 8 | syl1111anc 836 | 1 ⊢ (𝜃 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: inlinecirc02plem 46020 |
Copyright terms: Public domain | W3C validator |