MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldbl2 Structured version   Visualization version   GIF version

Theorem syldbl2 841
Description: Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypothesis
Ref Expression
syldbl2.1 ((𝜑𝜓) → (𝜓𝜃))
Assertion
Ref Expression
syldbl2 ((𝜑𝜓) → 𝜃)

Proof of Theorem syldbl2
StepHypRef Expression
1 syldbl2.1 . . 3 ((𝜑𝜓) → (𝜓𝜃))
21com12 32 . 2 (𝜓 → ((𝜑𝜓) → 𝜃))
32anabsi7 671 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  elpredimg  6268  rexdif1en  9082  php  9131  fpwwe2lem4  10547  elfzoextl  13642  rprmdvdspow  33480  rprmdvdsprod  33481  constrmon  33710  aks4d1p3  42051  primrootsunit1  42070  primrootlekpowne0  42078  sticksstones1  42119  sticksstones11  42129  unitscyglem2  42169
  Copyright terms: Public domain W3C validator