| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldbl2 | Structured version Visualization version GIF version | ||
| Description: Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| syldbl2.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| syldbl2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldbl2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 → 𝜃)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜃)) |
| 3 | 2 | anabsi7 671 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: elpredimg 6263 rexdif1en 9070 php 9116 fpwwe2lem4 10522 elfzoextl 13618 rprmdvdspow 33493 rprmdvdsprod 33494 constrmon 33752 aks4d1p3 42110 primrootsunit1 42129 primrootlekpowne0 42137 sticksstones1 42178 sticksstones11 42188 unitscyglem2 42228 |
| Copyright terms: Public domain | W3C validator |