Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inlinecirc02plem Structured version   Visualization version   GIF version

Theorem inlinecirc02plem 44141
Description: Lemma for inlinecirc02p 44142. (Contributed by AV, 7-May-2023.) (Revised by AV, 15-May-2023.)
Hypotheses
Ref Expression
inlinecirc02p.i 𝐼 = {1, 2}
inlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
inlinecirc02p.p 𝑃 = (ℝ ↑𝑚 𝐼)
inlinecirc02p.s 𝑆 = (Sphere‘𝐸)
inlinecirc02p.0 0 = (𝐼 × {0})
inlinecirc02p.l 𝐿 = (LineM𝐸)
inlinecirc02plem.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
inlinecirc02plem.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
inlinecirc02plem.a 𝐴 = ((𝑋‘2) − (𝑌‘2))
inlinecirc02plem.b 𝐵 = ((𝑌‘1) − (𝑋‘1))
inlinecirc02plem.c 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
Assertion
Ref Expression
inlinecirc02plem (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
Distinct variable groups:   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏   𝑅,𝑎,𝑏   𝑆,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   0 ,𝑎,𝑏   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏   𝐷,𝑎,𝑏   𝑄,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)   𝐼(𝑎,𝑏)

Proof of Theorem inlinecirc02plem
StepHypRef Expression
1 simprr 760 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 0 < 𝐷)
21gt0ne0d 10999 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐷 ≠ 0)
3 inlinecirc02plem.a . . . . . . . . . . 11 𝐴 = ((𝑋‘2) − (𝑌‘2))
4 inlinecirc02p.i . . . . . . . . . . . . . 14 𝐼 = {1, 2}
5 inlinecirc02p.p . . . . . . . . . . . . . 14 𝑃 = (ℝ ↑𝑚 𝐼)
64, 5rrx2pyel 44067 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
76adantr 473 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℝ)
84, 5rrx2pyel 44067 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
98adantl 474 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℝ)
107, 9resubcld 10863 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) − (𝑌‘2)) ∈ ℝ)
113, 10syl5eqel 2864 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → 𝐴 ∈ ℝ)
12113adant3 1112 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐴 ∈ ℝ)
1312adantr 473 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐴 ∈ ℝ)
14 inlinecirc02plem.b . . . . . . . . . . 11 𝐵 = ((𝑌‘1) − (𝑋‘1))
154, 5rrx2pxel 44066 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
1615adantl 474 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℝ)
174, 5rrx2pxel 44066 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1817adantr 473 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℝ)
1916, 18resubcld 10863 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) − (𝑋‘1)) ∈ ℝ)
2014, 19syl5eqel 2864 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → 𝐵 ∈ ℝ)
21203adant3 1112 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐵 ∈ ℝ)
2221adantr 473 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐵 ∈ ℝ)
23 inlinecirc02plem.c . . . . . . . . . . 11 𝐶 = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
247, 16remulcld 10464 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℝ)
2518, 9remulcld 10464 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℝ)
2624, 25resubcld 10863 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) ∈ ℝ)
2723, 26syl5eqel 2864 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → 𝐶 ∈ ℝ)
28273adant3 1112 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝐶 ∈ ℝ)
2928adantr 473 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐶 ∈ ℝ)
3011, 20, 273jca 1108 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
31303adant3 1112 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
32 rpre 12206 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
3332adantr 473 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+ ∧ 0 < 𝐷) → 𝑅 ∈ ℝ)
34 inlinecirc02plem.q . . . . . . . . . . . 12 𝑄 = ((𝐴↑2) + (𝐵↑2))
35 inlinecirc02plem.d . . . . . . . . . . . 12 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
3634, 35itsclc0lem3 44113 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → 𝐷 ∈ ℝ)
3731, 33, 36syl2an 586 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐷 ∈ ℝ)
3837, 1elrpd 12239 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐷 ∈ ℝ+)
3938rprege0d 12249 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
4034resum2sqcl 44061 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ)
4111, 20, 40syl2anc 576 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → 𝑄 ∈ ℝ)
42413adant3 1112 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ∈ ℝ)
434, 5, 14, 3rrx2pnedifcoorneorr 44072 . . . . . . . . . . . . 13 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
4443orcomd 857 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
4534resum2sqorgt0 44064 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄)
4612, 21, 44, 45syl3anc 1351 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 0 < 𝑄)
4746gt0ne0d 10999 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑄 ≠ 0)
4842, 47jca 504 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
4948adantr 473 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0))
50 itsclc0lem1 44111 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5113, 22, 29, 39, 49, 50syl311anc 1364 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
52 itsclc0lem2 44112 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5322, 13, 29, 39, 49, 52syl311anc 1364 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5451, 53jca 504 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ))
5554adantr 473 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ))
564, 5prelrrx2 44068 . . . . 5 (((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) → {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃)
5755, 56syl 17 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃)
58 itsclc0lem2 44112 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
5913, 22, 29, 39, 49, 58syl311anc 1364 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ)
60 itsclc0lem1 44111 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) ∧ (𝑄 ∈ ℝ ∧ 𝑄 ≠ 0)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6122, 13, 29, 39, 49, 60syl311anc 1364 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ)
6259, 61jca 504 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ))
6362adantr 473 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ((((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ))
644, 5prelrrx2 44068 . . . . 5 (((((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∈ ℝ ∧ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∈ ℝ) → {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃)
6563, 64syl 17 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃)
66 simpl 475 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
67 simprl 758 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝑅 ∈ ℝ+)
68 0red 10437 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 0 ∈ ℝ)
6968, 37, 1ltled 10582 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 0 ≤ 𝐷)
7066, 67, 69jca32 508 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)))
7170adantr 473 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)))
72 inlinecirc02p.e . . . . . . 7 𝐸 = (ℝ^‘𝐼)
73 inlinecirc02p.s . . . . . . 7 𝑆 = (Sphere‘𝐸)
74 inlinecirc02p.0 . . . . . . 7 0 = (𝐼 × {0})
75 inlinecirc02p.l . . . . . . 7 𝐿 = (LineM𝐸)
764, 72, 5, 73, 74, 34, 35, 75, 3, 14, 23itsclinecirc0in 44130 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})
7771, 76syl 17 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})
78 opex 5207 . . . . . 6 ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∈ V
79 opex 5207 . . . . . 6 ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ∈ V
80 opex 5207 . . . . . . 7 ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∈ V
81 opex 5207 . . . . . . 7 ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩ ∈ V
8280, 81pm3.2i 463 . . . . . 6 (⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∈ V ∧ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩ ∈ V)
8344adantr 473 . . . . . . . 8 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
8483adantr 473 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
85 orcom 856 . . . . . . . 8 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (𝐵 ≠ 0 ∨ 𝐴 ≠ 0))
8613recnd 10462 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐴 ∈ ℂ)
8786adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
8829recnd 10462 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐶 ∈ ℂ)
8988adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → 𝐶 ∈ ℂ)
9087, 89mulcld 10454 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (𝐴 · 𝐶) ∈ ℂ)
9122recnd 10462 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐵 ∈ ℂ)
9291adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
9337recnd 10462 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝐷 ∈ ℂ)
9493adantr 473 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → 𝐷 ∈ ℂ)
9594sqrtcld 14652 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (√‘𝐷) ∈ ℂ)
9692, 95mulcld 10454 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (𝐵 · (√‘𝐷)) ∈ ℂ)
9790, 96addcld 10453 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) ∈ ℂ)
9890, 96subcld 10792 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) ∈ ℂ)
9942adantr 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝑄 ∈ ℝ)
10099recnd 10462 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝑄 ∈ ℂ)
10147adantr 473 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → 𝑄 ≠ 0)
102100, 101jca 504 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0))
103102adantr 473 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0))
104 div11 11121 . . . . . . . . . . . . . . . . . 18 ((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) ∈ ℂ ∧ ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) ∈ ℂ ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ↔ ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) = ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))))
10597, 98, 103, 104syl3anc 1351 . . . . . . . . . . . . . . . . 17 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ↔ ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) = ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))))
106 addsubeq0 42902 . . . . . . . . . . . . . . . . . . 19 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐵 · (√‘𝐷)) ∈ ℂ) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) = ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) ↔ (𝐵 · (√‘𝐷)) = 0))
10790, 96, 106syl2anc 576 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) = ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) ↔ (𝐵 · (√‘𝐷)) = 0))
10837, 69resqrtcld 14632 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (√‘𝐷) ∈ ℝ)
109108recnd 10462 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (√‘𝐷) ∈ ℂ)
11091, 109mul0ord 11085 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((𝐵 · (√‘𝐷)) = 0 ↔ (𝐵 = 0 ∨ (√‘𝐷) = 0)))
111110adantr 473 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((𝐵 · (√‘𝐷)) = 0 ↔ (𝐵 = 0 ∨ (√‘𝐷) = 0)))
112 eqneqall 2972 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 = 0 → (𝐵 ≠ 0 → 𝐷 = 0))
113112com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 ≠ 0 → (𝐵 = 0 → 𝐷 = 0))
114113adantl 474 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (𝐵 = 0 → 𝐷 = 0))
115 sqrt00 14478 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
11637, 69, 115syl2anc 576 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
117116biimpd 221 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((√‘𝐷) = 0 → 𝐷 = 0))
118117adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((√‘𝐷) = 0 → 𝐷 = 0))
119114, 118jaod 845 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((𝐵 = 0 ∨ (√‘𝐷) = 0) → 𝐷 = 0))
120111, 119sylbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((𝐵 · (√‘𝐷)) = 0 → 𝐷 = 0))
121107, 120sylbid 232 . . . . . . . . . . . . . . . . 17 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) = ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) → 𝐷 = 0))
122105, 121sylbid 232 . . . . . . . . . . . . . . . 16 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → ((((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) → 𝐷 = 0))
123122necon3d 2982 . . . . . . . . . . . . . . 15 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐵 ≠ 0) → (𝐷 ≠ 0 → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ≠ (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))
124123impancom 444 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → (𝐵 ≠ 0 → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ≠ (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))
125124imp 398 . . . . . . . . . . . . 13 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐵 ≠ 0) → (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ≠ (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))
126125olcd 860 . . . . . . . . . . . 12 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐵 ≠ 0) → (1 ≠ 1 ∨ (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ≠ (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))
127 1ex 10429 . . . . . . . . . . . . 13 1 ∈ V
128 ovex 7002 . . . . . . . . . . . . 13 (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∈ V
129127, 128opthne 5225 . . . . . . . . . . . 12 (⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ↔ (1 ≠ 1 ∨ (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ≠ (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))
130126, 129sylibr 226 . . . . . . . . . . 11 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐵 ≠ 0) → ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩)
131 1ne2 11649 . . . . . . . . . . . . 13 1 ≠ 2
132131orci 851 . . . . . . . . . . . 12 (1 ≠ 2 ∨ (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ≠ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))
133127, 128opthne 5225 . . . . . . . . . . . 12 (⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩ ↔ (1 ≠ 2 ∨ (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ≠ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))
134132, 133mpbir 223 . . . . . . . . . . 11 ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩
135130, 134jctir 513 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐵 ≠ 0) → (⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩))
136135ex 405 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → (𝐵 ≠ 0 → (⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩)))
13720, 27remulcld 10464 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑃𝑌𝑃) → (𝐵 · 𝐶) ∈ ℝ)
1381373adant3 1112 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐵 · 𝐶) ∈ ℝ)
139138adantr 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝐵 · 𝐶) ∈ ℝ)
14013, 108remulcld 10464 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝐴 · (√‘𝐷)) ∈ ℝ)
141139, 140resubcld 10863 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ∈ ℝ)
142141recnd 10462 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ∈ ℂ)
143142adantr 473 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ∈ ℂ)
14422, 29remulcld 10464 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝐵 · 𝐶) ∈ ℝ)
145144, 140readdcld 10463 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ∈ ℝ)
146145adantr 473 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ∈ ℝ)
147146recnd 10462 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ∈ ℂ)
148102adantr 473 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0))
149 div11 11121 . . . . . . . . . . . . . . . . . 18 ((((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ∈ ℂ ∧ ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ∈ ℂ ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → ((((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ↔ ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))))
150143, 147, 148, 149syl3anc 1351 . . . . . . . . . . . . . . . . 17 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ↔ ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))))
151139recnd 10462 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝐵 · 𝐶) ∈ ℂ)
152140recnd 10462 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → (𝐴 · (√‘𝐷)) ∈ ℂ)
153151, 152jca 504 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((𝐵 · 𝐶) ∈ ℂ ∧ (𝐴 · (√‘𝐷)) ∈ ℂ))
154153adantr 473 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝐶) ∈ ℂ ∧ (𝐴 · (√‘𝐷)) ∈ ℂ))
155 eqcom 2779 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ↔ ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))
156 addsubeq0 42902 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 · 𝐶) ∈ ℂ ∧ (𝐴 · (√‘𝐷)) ∈ ℂ) → (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ↔ (𝐴 · (√‘𝐷)) = 0))
157155, 156syl5bb 275 . . . . . . . . . . . . . . . . . . 19 (((𝐵 · 𝐶) ∈ ℂ ∧ (𝐴 · (√‘𝐷)) ∈ ℂ) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ↔ (𝐴 · (√‘𝐷)) = 0))
158154, 157syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ↔ (𝐴 · (√‘𝐷)) = 0))
15986, 109mul0ord 11085 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ((𝐴 · (√‘𝐷)) = 0 ↔ (𝐴 = 0 ∨ (√‘𝐷) = 0)))
160159adantr 473 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((𝐴 · (√‘𝐷)) = 0 ↔ (𝐴 = 0 ∨ (√‘𝐷) = 0)))
161 eqneqall 2972 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = 0 → (𝐴 ≠ 0 → 𝐷 = 0))
162161com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ 0 → (𝐴 = 0 → 𝐷 = 0))
163162adantl 474 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → (𝐴 = 0 → 𝐷 = 0))
164117adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((√‘𝐷) = 0 → 𝐷 = 0))
165163, 164jaod 845 . . . . . . . . . . . . . . . . . . 19 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((𝐴 = 0 ∨ (√‘𝐷) = 0) → 𝐷 = 0))
166160, 165sylbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((𝐴 · (√‘𝐷)) = 0 → 𝐷 = 0))
167158, 166sylbid 232 . . . . . . . . . . . . . . . . 17 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) → 𝐷 = 0))
168150, 167sylbid 232 . . . . . . . . . . . . . . . 16 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → ((((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝐷 = 0))
169168necon3d 2982 . . . . . . . . . . . . . . 15 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐴 ≠ 0) → (𝐷 ≠ 0 → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ≠ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))
170169impancom 444 . . . . . . . . . . . . . 14 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → (𝐴 ≠ 0 → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ≠ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))
171170imp 398 . . . . . . . . . . . . 13 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐴 ≠ 0) → (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ≠ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))
172171olcd 860 . . . . . . . . . . . 12 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐴 ≠ 0) → (2 ≠ 2 ∨ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ≠ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))
173 2ex 11511 . . . . . . . . . . . . 13 2 ∈ V
174 ovex 7002 . . . . . . . . . . . . 13 (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∈ V
175173, 174opthne 5225 . . . . . . . . . . . 12 (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩ ↔ (2 ≠ 2 ∨ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ≠ (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))
176172, 175sylibr 226 . . . . . . . . . . 11 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐴 ≠ 0) → ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩)
177131necomi 3015 . . . . . . . . . . . . 13 2 ≠ 1
178177orci 851 . . . . . . . . . . . 12 (2 ≠ 1 ∨ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ≠ (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))
179173, 174opthne 5225 . . . . . . . . . . . 12 (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ↔ (2 ≠ 1 ∨ (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ≠ (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))
180178, 179mpbir 223 . . . . . . . . . . 11 ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩
181176, 180jctil 512 . . . . . . . . . 10 (((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) ∧ 𝐴 ≠ 0) → (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩))
182181ex 405 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → (𝐴 ≠ 0 → (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩)))
183136, 182orim12d 947 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ((𝐵 ≠ 0 ∨ 𝐴 ≠ 0) → ((⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩) ∨ (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩))))
18485, 183syl5bi 234 . . . . . . 7 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩) ∨ (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩))))
18584, 184mpd 15 . . . . . 6 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ((⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩) ∨ (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩)))
186 prneimg 4653 . . . . . . 7 (((⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∈ V ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ∈ V) ∧ (⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∈ V ∧ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩ ∈ V)) → (((⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩) ∨ (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩)) → {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}))
187186imp 398 . . . . . 6 ((((⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∈ V ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ∈ V) ∧ (⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∈ V ∧ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩ ∈ V)) ∧ ((⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩) ∨ (⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩ ∧ ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩ ≠ ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩))) → {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩})
18878, 79, 82, 185, 187mpsyl4anc 828 . . . . 5 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩})
18977, 188jca 504 . . . 4 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}} ∧ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}))
19057, 65, 1893jca 1108 . . 3 ((((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) ∧ 𝐷 ≠ 0) → ({⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃 ∧ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃 ∧ ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}} ∧ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩})))
1912, 190mpdan 674 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ({⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃 ∧ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃 ∧ ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}} ∧ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩})))
192 preq1 4537 . . . . 5 (𝑎 = {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} → {𝑎, 𝑏} = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, 𝑏})
193192eqeq2d 2782 . . . 4 (𝑎 = {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} → ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ↔ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, 𝑏}))
194 neeq1 3023 . . . 4 (𝑎 = {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} → (𝑎𝑏 ↔ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ 𝑏))
195193, 194anbi12d 621 . . 3 (𝑎 = {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} → (((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏) ↔ ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, 𝑏} ∧ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ 𝑏)))
196 preq2 4538 . . . . 5 (𝑏 = {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} → {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, 𝑏} = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}})
197196eqeq2d 2782 . . . 4 (𝑏 = {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} → ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, 𝑏} ↔ (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}}))
198 neeq2 3024 . . . 4 (𝑏 = {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} → ({⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ 𝑏 ↔ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}))
199197, 198anbi12d 621 . . 3 (𝑏 = {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} → (((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, 𝑏} ∧ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ 𝑏) ↔ ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}} ∧ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩})))
200195, 199rspc2ev 3544 . 2 (({⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃 ∧ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩} ∈ 𝑃 ∧ ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {{⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩}, {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩}} ∧ {⟨1, (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)⟩} ≠ {⟨1, (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)⟩, ⟨2, (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)⟩})) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
201191, 200syl 17 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < 𝐷)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  wne 2961  wrex 3083  Vcvv 3409  cin 3822  {csn 4435  {cpr 4437  cop 4441   class class class wbr 4923   × cxp 5399  cfv 6182  (class class class)co 6970  𝑚 cmap 8200  cc 10327  cr 10328  0cc0 10329  1c1 10330   + caddc 10332   · cmul 10334   < clt 10468  cle 10469  cmin 10664   / cdiv 11092  2c2 11489  +crp 12198  cexp 13238  csqrt 14447  ℝ^crrx 23683  LineMcline 44082  Spherecsph 44083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8892  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407  ax-addf 10408  ax-mulf 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-se 5361  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7495  df-2nd 7496  df-supp 7628  df-tpos 7689  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-map 8202  df-ixp 8254  df-en 8301  df-dom 8302  df-sdom 8303  df-fin 8304  df-fsupp 8623  df-sup 8695  df-oi 8763  df-card 9156  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-2 11497  df-3 11498  df-4 11499  df-5 11500  df-6 11501  df-7 11502  df-8 11503  df-9 11504  df-n0 11702  df-z 11788  df-dec 11906  df-uz 12053  df-rp 12199  df-xneg 12318  df-xadd 12319  df-xmul 12320  df-ico 12554  df-icc 12555  df-fz 12703  df-fzo 12844  df-seq 13179  df-exp 13239  df-hash 13500  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-clim 14700  df-sum 14898  df-struct 16335  df-ndx 16336  df-slot 16337  df-base 16339  df-sets 16340  df-ress 16341  df-plusg 16428  df-mulr 16429  df-starv 16430  df-sca 16431  df-vsca 16432  df-ip 16433  df-tset 16434  df-ple 16435  df-ds 16437  df-unif 16438  df-hom 16439  df-cco 16440  df-0g 16565  df-gsum 16566  df-prds 16571  df-pws 16573  df-mgm 17704  df-sgrp 17746  df-mnd 17757  df-mhm 17797  df-grp 17888  df-minusg 17889  df-sbg 17890  df-subg 18054  df-ghm 18121  df-cntz 18212  df-cmn 18662  df-abl 18663  df-mgp 18957  df-ur 18969  df-ring 19016  df-cring 19017  df-oppr 19090  df-dvdsr 19108  df-unit 19109  df-invr 19139  df-dvr 19150  df-rnghom 19184  df-drng 19221  df-field 19222  df-subrg 19250  df-staf 19332  df-srng 19333  df-lmod 19352  df-lss 19420  df-sra 19660  df-rgmod 19661  df-xmet 20234  df-met 20235  df-cnfld 20242  df-refld 20445  df-dsmm 20572  df-frlm 20587  df-nm 22889  df-tng 22891  df-tcph 23470  df-rrx 23685  df-ehl 23686  df-line 44084  df-sph 44085
This theorem is referenced by:  inlinecirc02p  44142
  Copyright terms: Public domain W3C validator