Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl1111anc | Structured version Visualization version GIF version |
Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1372 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
syl1111anc.1 | ⊢ (𝜑 → 𝜓) |
syl1111anc.2 | ⊢ (𝜑 → 𝜒) |
syl1111anc.3 | ⊢ (𝜑 → 𝜃) |
syl1111anc.4 | ⊢ (𝜑 → 𝜏) |
syl1111anc.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl1111anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl1111anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl1111anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 515 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl1111anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl1111anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl1111anc.5 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl21anc 836 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: mpsyl4anc 839 ucnima 22997 f1otrge 26780 swrdf1 30766 mgcf1o 30821 cycpmrn 30950 linds2eq 31110 rhmimaidl 31144 idlmulssprm 31152 isprmidlc 31158 prmidlc 31159 qsidomlem2 31164 lbsdiflsp0 31242 extdg1id 31273 3cubeslem1 40044 sineq0ALT 42062 cncfshift 42928 cncfperiod 42933 |
Copyright terms: Public domain | W3C validator |