MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl1111anc Structured version   Visualization version   GIF version

Theorem syl1111anc 840
Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1376 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
syl1111anc.1 (𝜑𝜓)
syl1111anc.2 (𝜑𝜒)
syl1111anc.3 (𝜑𝜃)
syl1111anc.4 (𝜑𝜏)
syl1111anc.5 ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl1111anc (𝜑𝜂)

Proof of Theorem syl1111anc
StepHypRef Expression
1 syl1111anc.1 . . 3 (𝜑𝜓)
2 syl1111anc.2 . . 3 (𝜑𝜒)
31, 2jca 511 . 2 (𝜑 → (𝜓𝜒))
4 syl1111anc.3 . 2 (𝜑𝜃)
5 syl1111anc.4 . 2 (𝜑𝜏)
6 syl1111anc.5 . 2 ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
73, 4, 5, 6syl21anc 837 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpsyl4anc  842  ucnima  24219  f1otrge  28851  swrdf1  32932  mgcf1o  32983  chnind  32991  gsumfs2d  33049  cycpmrn  33154  linds2eq  33396  rhmimaidl  33447  idlmulssprm  33457  isprmidlc  33462  prmidlc  33463  qsidomlem2  33468  ply1unit  33588  lbsdiflsp0  33666  extdg1id  33707  3cubeslem1  42707  cantnftermord  43344  sineq0ALT  44961  cncfshift  45903  cncfperiod  45908
  Copyright terms: Public domain W3C validator