![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl1111anc | Structured version Visualization version GIF version |
Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1373 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
syl1111anc.1 | ⊢ (𝜑 → 𝜓) |
syl1111anc.2 | ⊢ (𝜑 → 𝜒) |
syl1111anc.3 | ⊢ (𝜑 → 𝜃) |
syl1111anc.4 | ⊢ (𝜑 → 𝜏) |
syl1111anc.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl1111anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl1111anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl1111anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl1111anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl1111anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl1111anc.5 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl21anc 835 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpsyl4anc 839 ucnima 24007 f1otrge 28387 swrdf1 32384 mgcf1o 32437 cycpmrn 32569 linds2eq 32768 rhmimaidl 32821 idlmulssprm 32831 isprmidlc 32837 prmidlc 32838 qsidomlem2 32843 lbsdiflsp0 32996 extdg1id 33027 3cubeslem1 41725 cantnftermord 42373 sineq0ALT 44001 cncfshift 44890 cncfperiod 44895 |
Copyright terms: Public domain | W3C validator |