| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl1111anc | Structured version Visualization version GIF version | ||
| Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1376 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| syl1111anc.1 | ⊢ (𝜑 → 𝜓) |
| syl1111anc.2 | ⊢ (𝜑 → 𝜒) |
| syl1111anc.3 | ⊢ (𝜑 → 𝜃) |
| syl1111anc.4 | ⊢ (𝜑 → 𝜏) |
| syl1111anc.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl1111anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl1111anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl1111anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl1111anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl1111anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl1111anc.5 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl21anc 837 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpsyl4anc 842 ucnima 24175 f1otrge 28806 swrdf1 32885 mgcf1o 32936 chnind 32944 gsumfs2d 33002 cycpmrn 33107 linds2eq 33359 rhmimaidl 33410 idlmulssprm 33420 isprmidlc 33425 prmidlc 33426 qsidomlem2 33431 ply1unit 33551 lbsdiflsp0 33629 extdg1id 33668 3cubeslem1 42679 cantnftermord 43316 sineq0ALT 44933 cncfshift 45879 cncfperiod 45884 |
| Copyright terms: Public domain | W3C validator |