Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl1111anc | Structured version Visualization version GIF version |
Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1373 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
syl1111anc.1 | ⊢ (𝜑 → 𝜓) |
syl1111anc.2 | ⊢ (𝜑 → 𝜒) |
syl1111anc.3 | ⊢ (𝜑 → 𝜃) |
syl1111anc.4 | ⊢ (𝜑 → 𝜏) |
syl1111anc.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl1111anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl1111anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl1111anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl1111anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl1111anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl1111anc.5 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl21anc 835 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpsyl4anc 839 ucnima 23433 f1otrge 27233 swrdf1 31228 mgcf1o 31281 cycpmrn 31410 linds2eq 31575 rhmimaidl 31609 idlmulssprm 31617 isprmidlc 31623 prmidlc 31624 qsidomlem2 31629 lbsdiflsp0 31707 extdg1id 31738 3cubeslem1 40506 sineq0ALT 42557 cncfshift 43415 cncfperiod 43420 |
Copyright terms: Public domain | W3C validator |