| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl1111anc | Structured version Visualization version GIF version | ||
| Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1376 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| syl1111anc.1 | ⊢ (𝜑 → 𝜓) |
| syl1111anc.2 | ⊢ (𝜑 → 𝜒) |
| syl1111anc.3 | ⊢ (𝜑 → 𝜃) |
| syl1111anc.4 | ⊢ (𝜑 → 𝜏) |
| syl1111anc.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl1111anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl1111anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl1111anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl1111anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl1111anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl1111anc.5 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl21anc 837 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpsyl4anc 842 ucnima 24168 f1otrge 28799 swrdf1 32878 mgcf1o 32929 chnind 32937 gsumfs2d 32995 cycpmrn 33100 linds2eq 33352 rhmimaidl 33403 idlmulssprm 33413 isprmidlc 33418 prmidlc 33419 qsidomlem2 33424 ply1unit 33544 lbsdiflsp0 33622 extdg1id 33661 3cubeslem1 42672 cantnftermord 43309 sineq0ALT 44926 cncfshift 45872 cncfperiod 45877 |
| Copyright terms: Public domain | W3C validator |