MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl1111anc Structured version   Visualization version   GIF version

Theorem syl1111anc 840
Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1376 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.)
Hypotheses
Ref Expression
syl1111anc.1 (𝜑𝜓)
syl1111anc.2 (𝜑𝜒)
syl1111anc.3 (𝜑𝜃)
syl1111anc.4 (𝜑𝜏)
syl1111anc.5 ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl1111anc (𝜑𝜂)

Proof of Theorem syl1111anc
StepHypRef Expression
1 syl1111anc.1 . . 3 (𝜑𝜓)
2 syl1111anc.2 . . 3 (𝜑𝜒)
31, 2jca 511 . 2 (𝜑 → (𝜓𝜒))
4 syl1111anc.3 . 2 (𝜑𝜃)
5 syl1111anc.4 . 2 (𝜑𝜏)
6 syl1111anc.5 . 2 ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)
73, 4, 5, 6syl21anc 837 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpsyl4anc  842  chnind  18529  ucnima  24196  f1otrge  28851  swrdf1  32944  mgcf1o  32991  gsumfs2d  33042  cycpmrn  33119  linds2eq  33353  rhmimaidl  33404  idlmulssprm  33414  isprmidlc  33419  prmidlc  33420  qsidomlem2  33425  ply1unit  33545  lbsdiflsp0  33660  extdg1id  33700  3cubeslem1  42802  cantnftermord  43438  sineq0ALT  45054  cncfshift  45997  cncfperiod  46002
  Copyright terms: Public domain W3C validator