| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl1111anc | Structured version Visualization version GIF version | ||
| Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1376 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| syl1111anc.1 | ⊢ (𝜑 → 𝜓) |
| syl1111anc.2 | ⊢ (𝜑 → 𝜒) |
| syl1111anc.3 | ⊢ (𝜑 → 𝜃) |
| syl1111anc.4 | ⊢ (𝜑 → 𝜏) |
| syl1111anc.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl1111anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl1111anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl1111anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl1111anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl1111anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl1111anc.5 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl21anc 837 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpsyl4anc 842 chnind 18524 ucnima 24193 f1otrge 28848 swrdf1 32932 mgcf1o 32979 gsumfs2d 33030 cycpmrn 33107 linds2eq 33341 rhmimaidl 33392 idlmulssprm 33402 isprmidlc 33407 prmidlc 33408 qsidomlem2 33413 ply1unit 33533 lbsdiflsp0 33634 extdg1id 33674 3cubeslem1 42716 cantnftermord 43352 sineq0ALT 44968 cncfshift 45911 cncfperiod 45916 |
| Copyright terms: Public domain | W3C validator |