| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl1111anc | Structured version Visualization version GIF version | ||
| Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1376 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| syl1111anc.1 | ⊢ (𝜑 → 𝜓) |
| syl1111anc.2 | ⊢ (𝜑 → 𝜒) |
| syl1111anc.3 | ⊢ (𝜑 → 𝜃) |
| syl1111anc.4 | ⊢ (𝜑 → 𝜏) |
| syl1111anc.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl1111anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl1111anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl1111anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl1111anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl1111anc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl1111anc.5 | . 2 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl21anc 837 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpsyl4anc 842 ucnima 24219 f1otrge 28851 swrdf1 32932 mgcf1o 32983 chnind 32991 gsumfs2d 33049 cycpmrn 33154 linds2eq 33396 rhmimaidl 33447 idlmulssprm 33457 isprmidlc 33462 prmidlc 33463 qsidomlem2 33468 ply1unit 33588 lbsdiflsp0 33666 extdg1id 33707 3cubeslem1 42707 cantnftermord 43344 sineq0ALT 44961 cncfshift 45903 cncfperiod 45908 |
| Copyright terms: Public domain | W3C validator |