Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.87 | Structured version Visualization version GIF version |
Description: Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.) |
Ref | Expression |
---|---|
pm4.87 | ⊢ (((((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) ∧ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒)))) ∧ ((𝜓 → (𝜑 → 𝜒)) ↔ ((𝜓 ∧ 𝜑) → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 450 | . . 3 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | |
2 | bi2.04 388 | . . 3 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ ((((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) ∧ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒)))) |
4 | impexp 450 | . . 3 ⊢ (((𝜓 ∧ 𝜑) → 𝜒) ↔ (𝜓 → (𝜑 → 𝜒))) | |
5 | 4 | bicomi 223 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
6 | 3, 5 | pm3.2i 470 | 1 ⊢ (((((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) ∧ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒)))) ∧ ((𝜓 → (𝜑 → 𝜒)) ↔ ((𝜓 ∧ 𝜑) → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |