|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naim12i | Structured version Visualization version GIF version | ||
| Description: Constructor rule for ⊼. (Contributed by Anthony Hart, 2-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| naim12i.1 | ⊢ (𝜑 → 𝜓) | 
| naim12i.2 | ⊢ (𝜒 → 𝜃) | 
| naim12i.3 | ⊢ (𝜓 ⊼ 𝜃) | 
| Ref | Expression | 
|---|---|
| naim12i | ⊢ (𝜑 ⊼ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | naim12i.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 2 | naim12i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | naim12i.3 | . . 3 ⊢ (𝜓 ⊼ 𝜃) | |
| 4 | 2, 3 | naim1i 36393 | . 2 ⊢ (𝜑 ⊼ 𝜃) | 
| 5 | 1, 4 | naim2i 36394 | 1 ⊢ (𝜑 ⊼ 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-nan 1491 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |