Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naim12i Structured version   Visualization version   GIF version

Theorem naim12i 34582
Description: Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
Hypotheses
Ref Expression
naim12i.1 (𝜑𝜓)
naim12i.2 (𝜒𝜃)
naim12i.3 (𝜓𝜃)
Assertion
Ref Expression
naim12i (𝜑𝜒)

Proof of Theorem naim12i
StepHypRef Expression
1 naim12i.2 . 2 (𝜒𝜃)
2 naim12i.1 . . 3 (𝜑𝜓)
3 naim12i.3 . . 3 (𝜓𝜃)
42, 3naim1i 34580 . 2 (𝜑𝜃)
51, 4naim2i 34581 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-nan 1487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator