Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naim2i | Structured version Visualization version GIF version |
Description: Constructor rule for ⊼. (Contributed by Anthony Hart, 2-Sep-2011.) |
Ref | Expression |
---|---|
naim2i.1 | ⊢ (𝜑 → 𝜓) |
naim2i.2 | ⊢ (𝜒 ⊼ 𝜓) |
Ref | Expression |
---|---|
naim2i | ⊢ (𝜒 ⊼ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naim2i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | naim2i.2 | . 2 ⊢ (𝜒 ⊼ 𝜓) | |
3 | naim2 34579 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜒 ⊼ 𝜓) → (𝜒 ⊼ 𝜑))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ (𝜒 ⊼ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊼ wnan 1486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-nan 1487 |
This theorem is referenced by: naim12i 34582 |
Copyright terms: Public domain | W3C validator |