|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naim2i | Structured version Visualization version GIF version | ||
| Description: Constructor rule for ⊼. (Contributed by Anthony Hart, 2-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| naim2i.1 | ⊢ (𝜑 → 𝜓) | 
| naim2i.2 | ⊢ (𝜒 ⊼ 𝜓) | 
| Ref | Expression | 
|---|---|
| naim2i | ⊢ (𝜒 ⊼ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | naim2i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | naim2i.2 | . 2 ⊢ (𝜒 ⊼ 𝜓) | |
| 3 | naim2 36392 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜒 ⊼ 𝜓) → (𝜒 ⊼ 𝜑))) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ (𝜒 ⊼ 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-nan 1491 | 
| This theorem is referenced by: naim12i 36395 | 
| Copyright terms: Public domain | W3C validator |