|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > naim2 | Structured version Visualization version GIF version | ||
| Description: Constructor theorem for ⊼. (Contributed by Anthony Hart, 1-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| naim2 | ⊢ ((𝜑 → 𝜓) → ((𝜒 ⊼ 𝜓) → (𝜒 ⊼ 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con3 153 | . . 3 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | 1 | orim2d 969 | . 2 ⊢ ((𝜑 → 𝜓) → ((¬ 𝜒 ∨ ¬ 𝜓) → (¬ 𝜒 ∨ ¬ 𝜑))) | 
| 3 | pm3.13 997 | . . . 4 ⊢ (¬ (𝜒 ∧ 𝜓) → (¬ 𝜒 ∨ ¬ 𝜓)) | |
| 4 | pm3.14 998 | . . . 4 ⊢ ((¬ 𝜒 ∨ ¬ 𝜑) → ¬ (𝜒 ∧ 𝜑)) | |
| 5 | 3, 4 | imim12i 62 | . . 3 ⊢ (((¬ 𝜒 ∨ ¬ 𝜓) → (¬ 𝜒 ∨ ¬ 𝜑)) → (¬ (𝜒 ∧ 𝜓) → ¬ (𝜒 ∧ 𝜑))) | 
| 6 | df-nan 1492 | . . 3 ⊢ ((𝜒 ⊼ 𝜓) ↔ ¬ (𝜒 ∧ 𝜓)) | |
| 7 | df-nan 1492 | . . 3 ⊢ ((𝜒 ⊼ 𝜑) ↔ ¬ (𝜒 ∧ 𝜑)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | . 2 ⊢ (((¬ 𝜒 ∨ ¬ 𝜓) → (¬ 𝜒 ∨ ¬ 𝜑)) → ((𝜒 ⊼ 𝜓) → (𝜒 ⊼ 𝜑))) | 
| 9 | 2, 8 | syl 17 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜒 ⊼ 𝜓) → (𝜒 ⊼ 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ⊼ wnan 1491 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-nan 1492 | 
| This theorem is referenced by: naim2i 36393 | 
| Copyright terms: Public domain | W3C validator |