Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanbi1i | Structured version Visualization version GIF version |
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
nanbi1i | ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | nanbi1 1497 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nabi1i 34485 |
Copyright terms: Public domain | W3C validator |