MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi1i Structured version   Visualization version   GIF version

Theorem nanbi1i 1500
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
Hypothesis
Ref Expression
nanbii.1 (𝜑𝜓)
Assertion
Ref Expression
nanbi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem nanbi1i
StepHypRef Expression
1 nanbii.1 . 2 (𝜑𝜓)
2 nanbi1 1497 . 2 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
31, 2ax-mp 5 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wnan 1487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-nan 1488
This theorem is referenced by:  nabi1i  34485
  Copyright terms: Public domain W3C validator