Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanbi1 | Structured version Visualization version GIF version |
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
Ref | Expression |
---|---|
nanbi1 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1 348 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → ¬ 𝜒) ↔ (𝜓 → ¬ 𝜒))) | |
2 | dfnan2 1489 | . 2 ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜑 → ¬ 𝜒)) | |
3 | dfnan2 1489 | . 2 ⊢ ((𝜓 ⊼ 𝜒) ↔ (𝜓 → ¬ 𝜒)) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ⊼ wnan 1486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-nan 1487 |
This theorem is referenced by: nanbi2 1497 nanbi12 1498 nanbi1i 1499 nanbi1d 1502 |
Copyright terms: Public domain | W3C validator |