MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi1 Structured version   Visualization version   GIF version

Theorem nanbi1 1496
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by Wolf Lammen, 27-Jun-2020.)
Assertion
Ref Expression
nanbi1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem nanbi1
StepHypRef Expression
1 imbi1 348 . 2 ((𝜑𝜓) → ((𝜑 → ¬ 𝜒) ↔ (𝜓 → ¬ 𝜒)))
2 dfnan2 1489 . 2 ((𝜑𝜒) ↔ (𝜑 → ¬ 𝜒))
3 dfnan2 1489 . 2 ((𝜓𝜒) ↔ (𝜓 → ¬ 𝜒))
41, 2, 33bitr4g 314 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-nan 1487
This theorem is referenced by:  nanbi2  1497  nanbi12  1498  nanbi1i  1499  nanbi1d  1502
  Copyright terms: Public domain W3C validator