|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nanbi1 | Structured version Visualization version GIF version | ||
| Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| nanbi1 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imbi1 347 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → ¬ 𝜒) ↔ (𝜓 → ¬ 𝜒))) | |
| 2 | dfnan2 1493 | . 2 ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜑 → ¬ 𝜒)) | |
| 3 | dfnan2 1493 | . 2 ⊢ ((𝜓 ⊼ 𝜒) ↔ (𝜓 → ¬ 𝜒)) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1491 | 
| This theorem is referenced by: nanbi2 1501 nanbi12 1502 nanbi1i 1503 nanbi1d 1506 | 
| Copyright terms: Public domain | W3C validator |