MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbior Structured version   Visualization version   GIF version

Theorem nbior 885
Description: If two propositions are not equivalent, then at least one is true. (Contributed by BJ, 19-Apr-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Assertion
Ref Expression
nbior (¬ (𝜑𝜓) → (𝜑𝜓))

Proof of Theorem nbior
StepHypRef Expression
1 norbi 884 . 2 (¬ (𝜑𝜓) → (𝜑𝜓))
21con1i 149 1 (¬ (𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 845
This theorem is referenced by:  nmogtmnf  28652  nmopgtmnf  29750
  Copyright terms: Public domain W3C validator