| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1489 xpcan 6170 funun 6587 sorpssuni 7731 sorpssint 7732 soxp 8133 frxp3 8155 ackbij1lem18 10255 ackbij1b 10257 fincssdom 10342 fin23lem30 10361 fin1a2lem13 10431 pythagtriplem4 16844 zringlpirlem3 21430 psgnodpm 21553 nosepdmlem 27652 0elold 27878 orngsqr 33331 elzdif0 34016 qqhval2lem 34017 eulerpartlemsv2 34395 eulerpartlemv 34401 eulerpartlemf 34407 eulerpartlemgh 34415 dfon2lem4 35809 dfon2lem6 35811 dfrdg4 35974 rankeq1o 36194 wl-orel12 37534 poimirlem31 37680 pellfund14gap 42877 wepwsolem 43033 fmul01lt1lem1 45580 cncfiooicclem1 45889 etransclem24 46254 nnfoctbdjlem 46451 |
| Copyright terms: Public domain | W3C validator |