| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1489 xpcan 6152 funun 6565 sorpssuni 7711 sorpssint 7712 soxp 8111 frxp3 8133 ackbij1lem18 10196 ackbij1b 10198 fincssdom 10283 fin23lem30 10302 fin1a2lem13 10372 pythagtriplem4 16797 zringlpirlem3 21381 psgnodpm 21504 nosepdmlem 27602 0elold 27828 orngsqr 33289 elzdif0 33977 qqhval2lem 33978 eulerpartlemsv2 34356 eulerpartlemv 34362 eulerpartlemf 34368 eulerpartlemgh 34376 dfon2lem4 35781 dfon2lem6 35783 dfrdg4 35946 rankeq1o 36166 wl-orel12 37506 poimirlem31 37652 pellfund14gap 42882 wepwsolem 43038 fmul01lt1lem1 45589 cncfiooicclem1 45898 etransclem24 46263 nnfoctbdjlem 46460 |
| Copyright terms: Public domain | W3C validator |