| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1489 xpcan 6123 funun 6527 sorpssuni 7665 sorpssint 7666 soxp 8059 frxp3 8081 ackbij1lem18 10124 ackbij1b 10126 fincssdom 10211 fin23lem30 10230 fin1a2lem13 10300 pythagtriplem4 16728 orngsqr 20779 zringlpirlem3 21399 psgnodpm 21523 nosepdmlem 27620 0elold 27853 elzdif0 33988 qqhval2lem 33989 eulerpartlemsv2 34366 eulerpartlemv 34372 eulerpartlemf 34378 eulerpartlemgh 34386 dfon2lem4 35819 dfon2lem6 35821 dfrdg4 35984 rankeq1o 36204 wl-orel12 37544 poimirlem31 37690 pellfund14gap 42919 wepwsolem 43074 fmul01lt1lem1 45623 cncfiooicclem1 45930 etransclem24 46295 nnfoctbdjlem 46492 |
| Copyright terms: Public domain | W3C validator |