MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orel1 Structured version   Visualization version   GIF version

Theorem orel1 887
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
Assertion
Ref Expression
orel1 𝜑 → ((𝜑𝜓) → 𝜓))

Proof of Theorem orel1
StepHypRef Expression
1 pm2.53 850 . 2 ((𝜑𝜓) → (¬ 𝜑𝜓))
21com12 32 1 𝜑 → ((𝜑𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  pm2.25  888  biorf  935  3orel1  1091  3orel13  1486  xpcan  6207  funun  6624  sorpssuni  7767  sorpssint  7768  soxp  8170  frxp3  8192  ackbij1lem18  10305  ackbij1b  10307  fincssdom  10392  fin23lem30  10411  fin1a2lem13  10481  pythagtriplem4  16866  zringlpirlem3  21498  psgnodpm  21629  nosepdmlem  27746  0elold  27965  orngsqr  33299  elzdif0  33926  qqhval2lem  33927  eulerpartlemsv2  34323  eulerpartlemv  34329  eulerpartlemf  34335  eulerpartlemgh  34343  dfon2lem4  35750  dfon2lem6  35752  dfrdg4  35915  rankeq1o  36135  wl-orel12  37465  poimirlem31  37611  pellfund14gap  42843  wepwsolem  42999  fmul01lt1lem1  45505  cncfiooicclem1  45814  etransclem24  46179  nnfoctbdjlem  46376
  Copyright terms: Public domain W3C validator