| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1489 xpcan 6149 funun 6562 sorpssuni 7708 sorpssint 7709 soxp 8108 frxp3 8130 ackbij1lem18 10189 ackbij1b 10191 fincssdom 10276 fin23lem30 10295 fin1a2lem13 10365 pythagtriplem4 16790 zringlpirlem3 21374 psgnodpm 21497 nosepdmlem 27595 0elold 27821 orngsqr 33282 elzdif0 33970 qqhval2lem 33971 eulerpartlemsv2 34349 eulerpartlemv 34355 eulerpartlemf 34361 eulerpartlemgh 34369 dfon2lem4 35774 dfon2lem6 35776 dfrdg4 35939 rankeq1o 36159 wl-orel12 37499 poimirlem31 37645 pellfund14gap 42875 wepwsolem 43031 fmul01lt1lem1 45582 cncfiooicclem1 45891 etransclem24 46256 nnfoctbdjlem 46453 |
| Copyright terms: Public domain | W3C validator |