| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1488 xpcan 6176 funun 6592 sorpssuni 7734 sorpssint 7735 soxp 8136 frxp3 8158 ackbij1lem18 10258 ackbij1b 10260 fincssdom 10345 fin23lem30 10364 fin1a2lem13 10434 pythagtriplem4 16839 zringlpirlem3 21437 psgnodpm 21560 nosepdmlem 27664 0elold 27883 orngsqr 33274 elzdif0 33940 qqhval2lem 33941 eulerpartlemsv2 34319 eulerpartlemv 34325 eulerpartlemf 34331 eulerpartlemgh 34339 dfon2lem4 35746 dfon2lem6 35748 dfrdg4 35911 rankeq1o 36131 wl-orel12 37471 poimirlem31 37617 pellfund14gap 42861 wepwsolem 43017 fmul01lt1lem1 45556 cncfiooicclem1 45865 etransclem24 46230 nnfoctbdjlem 46427 |
| Copyright terms: Public domain | W3C validator |