![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 850 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1092 3orel13 1488 xpcan 6176 funun 6595 sorpssuni 7722 sorpssint 7723 soxp 8115 frxp3 8137 ackbij1lem18 10232 ackbij1b 10234 fincssdom 10318 fin23lem30 10337 fin1a2lem13 10407 pythagtriplem4 16752 zringlpirlem3 21034 psgnodpm 21141 nosepdmlem 27186 0elold 27402 orngsqr 32422 elzdif0 32960 qqhval2lem 32961 eulerpartlemsv2 33357 eulerpartlemv 33363 eulerpartlemf 33369 eulerpartlemgh 33377 dfon2lem4 34758 dfon2lem6 34760 dfrdg4 34923 rankeq1o 35143 wl-orel12 36380 poimirlem31 36519 pellfund14gap 41625 wepwsolem 41784 fmul01lt1lem1 44300 cncfiooicclem1 44609 etransclem24 44974 nnfoctbdjlem 45171 |
Copyright terms: Public domain | W3C validator |