| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1489 xpcan 6128 funun 6532 sorpssuni 7671 sorpssint 7672 soxp 8065 frxp3 8087 ackbij1lem18 10134 ackbij1b 10136 fincssdom 10221 fin23lem30 10240 fin1a2lem13 10310 pythagtriplem4 16733 orngsqr 20783 zringlpirlem3 21403 psgnodpm 21527 nosepdmlem 27623 0elold 27856 elzdif0 34014 qqhval2lem 34015 eulerpartlemsv2 34392 eulerpartlemv 34398 eulerpartlemf 34404 eulerpartlemgh 34412 dfon2lem4 35849 dfon2lem6 35851 dfrdg4 36016 rankeq1o 36236 wl-orel12 37576 poimirlem31 37711 pellfund14gap 43004 wepwsolem 43159 fmul01lt1lem1 45708 cncfiooicclem1 46015 etransclem24 46380 nnfoctbdjlem 46577 |
| Copyright terms: Public domain | W3C validator |