| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
| Ref | Expression |
|---|---|
| orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1489 xpcan 6129 funun 6532 sorpssuni 7672 sorpssint 7673 soxp 8069 frxp3 8091 ackbij1lem18 10149 ackbij1b 10151 fincssdom 10236 fin23lem30 10255 fin1a2lem13 10325 pythagtriplem4 16749 orngsqr 20769 zringlpirlem3 21389 psgnodpm 21513 nosepdmlem 27611 0elold 27842 elzdif0 33946 qqhval2lem 33947 eulerpartlemsv2 34325 eulerpartlemv 34331 eulerpartlemf 34337 eulerpartlemgh 34345 dfon2lem4 35759 dfon2lem6 35761 dfrdg4 35924 rankeq1o 36144 wl-orel12 37484 poimirlem31 37630 pellfund14gap 42860 wepwsolem 43015 fmul01lt1lem1 45566 cncfiooicclem1 45875 etransclem24 46240 nnfoctbdjlem 46437 |
| Copyright terms: Public domain | W3C validator |