MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orel1 Structured version   Visualization version   GIF version

Theorem orel1 888
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
Assertion
Ref Expression
orel1 𝜑 → ((𝜑𝜓) → 𝜓))

Proof of Theorem orel1
StepHypRef Expression
1 pm2.53 851 . 2 ((𝜑𝜓) → (¬ 𝜑𝜓))
21com12 32 1 𝜑 → ((𝜑𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm2.25  889  biorf  936  3orel1  1090  3orel13  1486  xpcan  6198  funun  6614  sorpssuni  7751  sorpssint  7752  soxp  8153  frxp3  8175  ackbij1lem18  10274  ackbij1b  10276  fincssdom  10361  fin23lem30  10380  fin1a2lem13  10450  pythagtriplem4  16853  zringlpirlem3  21493  psgnodpm  21624  nosepdmlem  27743  0elold  27962  orngsqr  33314  elzdif0  33943  qqhval2lem  33944  eulerpartlemsv2  34340  eulerpartlemv  34346  eulerpartlemf  34352  eulerpartlemgh  34360  dfon2lem4  35768  dfon2lem6  35770  dfrdg4  35933  rankeq1o  36153  wl-orel12  37492  poimirlem31  37638  pellfund14gap  42875  wepwsolem  43031  fmul01lt1lem1  45540  cncfiooicclem1  45849  etransclem24  46214  nnfoctbdjlem  46411
  Copyright terms: Public domain W3C validator