Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 847 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: pm2.25 886 biorf 933 3orel1 1089 xpcan 6068 funun 6464 sorpssuni 7563 sorpssint 7564 soxp 7941 ackbij1lem18 9924 ackbij1b 9926 fincssdom 10010 fin23lem30 10029 fin1a2lem13 10099 pythagtriplem4 16448 zringlpirlem3 20598 psgnodpm 20705 orngsqr 31405 elzdif0 31830 qqhval2lem 31831 eulerpartlemsv2 32225 eulerpartlemv 32231 eulerpartlemf 32237 eulerpartlemgh 32245 3orel13 33562 dfon2lem4 33668 dfon2lem6 33670 frxp3 33724 nosepdmlem 33813 dfrdg4 34180 rankeq1o 34400 wl-orel12 35597 poimirlem31 35735 pellfund14gap 40625 wepwsolem 40783 fmul01lt1lem1 43015 cncfiooicclem1 43324 etransclem24 43689 nnfoctbdjlem 43883 |
Copyright terms: Public domain | W3C validator |