![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 850 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: pm2.25 888 biorf 935 3orel1 1091 3orel13 1486 xpcan 6207 funun 6624 sorpssuni 7767 sorpssint 7768 soxp 8170 frxp3 8192 ackbij1lem18 10305 ackbij1b 10307 fincssdom 10392 fin23lem30 10411 fin1a2lem13 10481 pythagtriplem4 16866 zringlpirlem3 21498 psgnodpm 21629 nosepdmlem 27746 0elold 27965 orngsqr 33299 elzdif0 33926 qqhval2lem 33927 eulerpartlemsv2 34323 eulerpartlemv 34329 eulerpartlemf 34335 eulerpartlemgh 34343 dfon2lem4 35750 dfon2lem6 35752 dfrdg4 35915 rankeq1o 36135 wl-orel12 37465 poimirlem31 37611 pellfund14gap 42843 wepwsolem 42999 fmul01lt1lem1 45505 cncfiooicclem1 45814 etransclem24 46179 nnfoctbdjlem 46376 |
Copyright terms: Public domain | W3C validator |