![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 850 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: pm2.25 888 biorf 935 3orel1 1089 3orel13 1483 xpcan 6180 funun 6599 sorpssuni 7737 sorpssint 7738 soxp 8134 frxp3 8156 ackbij1lem18 10261 ackbij1b 10263 fincssdom 10347 fin23lem30 10366 fin1a2lem13 10436 pythagtriplem4 16788 zringlpirlem3 21390 psgnodpm 21520 nosepdmlem 27629 0elold 27848 orngsqr 33032 elzdif0 33581 qqhval2lem 33582 eulerpartlemsv2 33978 eulerpartlemv 33984 eulerpartlemf 33990 eulerpartlemgh 33998 dfon2lem4 35382 dfon2lem6 35384 dfrdg4 35547 rankeq1o 35767 wl-orel12 36978 poimirlem31 37124 pellfund14gap 42307 wepwsolem 42466 fmul01lt1lem1 44972 cncfiooicclem1 45281 etransclem24 45646 nnfoctbdjlem 45843 |
Copyright terms: Public domain | W3C validator |