![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel1 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
orel1 | ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 851 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | 1 | com12 32 | 1 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: pm2.25 889 biorf 936 3orel1 1090 3orel13 1486 xpcan 6198 funun 6614 sorpssuni 7751 sorpssint 7752 soxp 8153 frxp3 8175 ackbij1lem18 10274 ackbij1b 10276 fincssdom 10361 fin23lem30 10380 fin1a2lem13 10450 pythagtriplem4 16853 zringlpirlem3 21493 psgnodpm 21624 nosepdmlem 27743 0elold 27962 orngsqr 33314 elzdif0 33943 qqhval2lem 33944 eulerpartlemsv2 34340 eulerpartlemv 34346 eulerpartlemf 34352 eulerpartlemgh 34360 dfon2lem4 35768 dfon2lem6 35770 dfrdg4 35933 rankeq1o 36153 wl-orel12 37492 poimirlem31 37638 pellfund14gap 42875 wepwsolem 43031 fmul01lt1lem1 45540 cncfiooicclem1 45849 etransclem24 46214 nnfoctbdjlem 46411 |
Copyright terms: Public domain | W3C validator |