![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmogtmnf | Structured version Visualization version GIF version |
Description: The norm of an operator is greater than minus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoxr.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoxr.2 | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoxr.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
Ref | Expression |
---|---|
nmogtmnf | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoxr.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nmoxr.2 | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
3 | nmoxr.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
4 | 1, 2, 3 | nmorepnf 30704 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) ≠ +∞)) |
5 | df-ne 2931 | . . 3 ⊢ ((𝑁‘𝑇) ≠ +∞ ↔ ¬ (𝑁‘𝑇) = +∞) | |
6 | 4, 5 | bitrdi 286 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → ((𝑁‘𝑇) ∈ ℝ ↔ ¬ (𝑁‘𝑇) = +∞)) |
7 | xor3 381 | . . 3 ⊢ (¬ ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) = +∞) ↔ ((𝑁‘𝑇) ∈ ℝ ↔ ¬ (𝑁‘𝑇) = +∞)) | |
8 | nbior 885 | . . 3 ⊢ (¬ ((𝑁‘𝑇) ∈ ℝ ↔ (𝑁‘𝑇) = +∞) → ((𝑁‘𝑇) ∈ ℝ ∨ (𝑁‘𝑇) = +∞)) | |
9 | 7, 8 | sylbir 234 | . 2 ⊢ (((𝑁‘𝑇) ∈ ℝ ↔ ¬ (𝑁‘𝑇) = +∞) → ((𝑁‘𝑇) ∈ ℝ ∨ (𝑁‘𝑇) = +∞)) |
10 | mnfltxr 13163 | . 2 ⊢ (((𝑁‘𝑇) ∈ ℝ ∨ (𝑁‘𝑇) = +∞) → -∞ < (𝑁‘𝑇)) | |
11 | 6, 9, 10 | 3syl 18 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → -∞ < (𝑁‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 845 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5155 ⟶wf 6552 ‘cfv 6556 (class class class)co 7426 ℝcr 11159 +∞cpnf 11297 -∞cmnf 11298 < clt 11300 NrmCVeccnv 30520 BaseSetcba 30522 normOpOLD cnmoo 30677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-pre-sup 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-map 8859 df-en 8977 df-dom 8978 df-sdom 8979 df-sup 9487 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12613 df-uz 12877 df-rp 13031 df-seq 14024 df-exp 14084 df-cj 15106 df-re 15107 df-im 15108 df-sqrt 15242 df-abs 15243 df-grpo 30429 df-gid 30430 df-ginv 30431 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 df-nmoo 30681 |
This theorem is referenced by: nmobndi 30711 nmblore 30722 ubthlem3 30808 |
Copyright terms: Public domain | W3C validator |