| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmopgtmnf | Structured version Visualization version GIF version | ||
| Description: The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmopgtmnf | ⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoprepnf 31837 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) ≠ +∞)) | |
| 2 | df-ne 2927 | . . 3 ⊢ ((normop‘𝑇) ≠ +∞ ↔ ¬ (normop‘𝑇) = +∞) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ ¬ (normop‘𝑇) = +∞)) |
| 4 | xor3 382 | . . 3 ⊢ (¬ ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) = +∞) ↔ ((normop‘𝑇) ∈ ℝ ↔ ¬ (normop‘𝑇) = +∞)) | |
| 5 | nbior 887 | . . 3 ⊢ (¬ ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) = +∞) → ((normop‘𝑇) ∈ ℝ ∨ (normop‘𝑇) = +∞)) | |
| 6 | 4, 5 | sylbir 235 | . 2 ⊢ (((normop‘𝑇) ∈ ℝ ↔ ¬ (normop‘𝑇) = +∞) → ((normop‘𝑇) ∈ ℝ ∨ (normop‘𝑇) = +∞)) |
| 7 | mnfltxr 13018 | . 2 ⊢ (((normop‘𝑇) ∈ ℝ ∨ (normop‘𝑇) = +∞) → -∞ < (normop‘𝑇)) | |
| 8 | 3, 6, 7 | 3syl 18 | 1 ⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 class class class wbr 5089 ⟶wf 6473 ‘cfv 6477 ℝcr 10997 +∞cpnf 11135 -∞cmnf 11136 < clt 11138 ℋchba 30889 normopcnop 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-hilex 30969 ax-hfvadd 30970 ax-hvcom 30971 ax-hvass 30972 ax-hv0cl 30973 ax-hvaddid 30974 ax-hfvmul 30975 ax-hvmulid 30976 ax-hvmulass 30977 ax-hvdistr1 30978 ax-hvdistr2 30979 ax-hvmul0 30980 ax-hfi 31049 ax-his1 31052 ax-his2 31053 ax-his3 31054 ax-his4 31055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-grpo 30463 df-gid 30464 df-ablo 30515 df-vc 30529 df-nv 30562 df-va 30565 df-ba 30566 df-sm 30567 df-0v 30568 df-nmcv 30570 df-hnorm 30938 df-hba 30939 df-hvsub 30941 df-nmop 31809 |
| This theorem is referenced by: nmopre 31840 nmophmi 32001 bdophsi 32066 bdopcoi 32068 |
| Copyright terms: Public domain | W3C validator |