HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmopgtmnf Structured version   Visualization version   GIF version

Theorem nmopgtmnf 31722
Description: The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmopgtmnf (𝑇: ℋ⟶ ℋ → -∞ < (normop𝑇))

Proof of Theorem nmopgtmnf
StepHypRef Expression
1 nmoprepnf 31721 . . 3 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ∈ ℝ ↔ (normop𝑇) ≠ +∞))
2 df-ne 2931 . . 3 ((normop𝑇) ≠ +∞ ↔ ¬ (normop𝑇) = +∞)
31, 2bitrdi 286 . 2 (𝑇: ℋ⟶ ℋ → ((normop𝑇) ∈ ℝ ↔ ¬ (normop𝑇) = +∞))
4 xor3 381 . . 3 (¬ ((normop𝑇) ∈ ℝ ↔ (normop𝑇) = +∞) ↔ ((normop𝑇) ∈ ℝ ↔ ¬ (normop𝑇) = +∞))
5 nbior 885 . . 3 (¬ ((normop𝑇) ∈ ℝ ↔ (normop𝑇) = +∞) → ((normop𝑇) ∈ ℝ ∨ (normop𝑇) = +∞))
64, 5sylbir 234 . 2 (((normop𝑇) ∈ ℝ ↔ ¬ (normop𝑇) = +∞) → ((normop𝑇) ∈ ℝ ∨ (normop𝑇) = +∞))
7 mnfltxr 13139 . 2 (((normop𝑇) ∈ ℝ ∨ (normop𝑇) = +∞) → -∞ < (normop𝑇))
83, 6, 73syl 18 1 (𝑇: ℋ⟶ ℋ → -∞ < (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 845   = wceq 1533  wcel 2098  wne 2930   class class class wbr 5143  wf 6539  cfv 6543  cr 11137  +∞cpnf 11275  -∞cmnf 11276   < clt 11278  chba 30773  normopcnop 30799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-hilex 30853  ax-hfvadd 30854  ax-hvcom 30855  ax-hvass 30856  ax-hv0cl 30857  ax-hvaddid 30858  ax-hfvmul 30859  ax-hvmulid 30860  ax-hvmulass 30861  ax-hvdistr1 30862  ax-hvdistr2 30863  ax-hvmul0 30864  ax-hfi 30933  ax-his1 30936  ax-his2 30937  ax-his3 30938  ax-his4 30939
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-grpo 30347  df-gid 30348  df-ablo 30399  df-vc 30413  df-nv 30446  df-va 30449  df-ba 30450  df-sm 30451  df-0v 30452  df-nmcv 30454  df-hnorm 30822  df-hba 30823  df-hvsub 30825  df-nmop 31693
This theorem is referenced by:  nmopre  31724  nmophmi  31885  bdophsi  31950  bdopcoi  31952
  Copyright terms: Public domain W3C validator