MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexr Structured version   Visualization version   GIF version

Theorem nexr 2177
Description: Inference associated with the contrapositive of 19.8a 2166. (Contributed by Jeff Hankins, 26-Jul-2009.)
Hypothesis
Ref Expression
nexr.1 ¬ ∃𝑥𝜑
Assertion
Ref Expression
nexr ¬ 𝜑

Proof of Theorem nexr
StepHypRef Expression
1 nexr.1 . 2 ¬ ∃𝑥𝜑
2 19.8a 2166 . 2 (𝜑 → ∃𝑥𝜑)
31, 2mto 196 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-ex 1774
This theorem is referenced by:  alimp-surprise  48039
  Copyright terms: Public domain W3C validator