![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1984 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2174. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2170 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 2002 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
4 | ax6evr 2016 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
5 | 3, 4 | exlimiiv 1932 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: 19.8ad 2173 sp 2174 19.2g 2179 19.23bi 2182 nexr 2183 qexmid 2184 nf5r 2185 19.9t 2195 ax6e 2380 exdistrf 2444 equvini 2452 euor2 2607 2moexv 2621 2moswapv 2623 2euexv 2625 2moex 2634 2euex 2635 2moswap 2638 2mo 2642 rspe 3244 ceqex 3641 intab 4983 eusv2nf 5394 copsexgw 5491 copsexg 5492 dmcosseq 5973 dminss 6153 imainss 6154 relssdmrnOLD 6269 oprabidw 7444 oprabid 7445 frrlem8 8282 frrlem10 8284 hta 9896 axextnd 10590 axpowndlem2 10597 axregndlem1 10601 axregnd 10603 fpwwe 10645 reclem2pr 11047 bnj1121 34292 finminlem 35508 bj-19.23bit 35874 bj-nexrt 35875 bj-19.9htbi 35886 bj-sbsb 36020 bj-finsumval0 36471 wl-exeq 36708 mopickr 37537 ax12indn 38118 pm11.58 43453 axc11next 43469 iotavalsb 43496 vk15.4j 43593 onfrALTlem1 43613 onfrALTlem1VD 43955 vk15.4jVD 43979 suprnmpt 44173 ssfiunibd 44319 pgind 47851 |
Copyright terms: Public domain | W3C validator |