Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1987 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2178. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2174 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 2005 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
4 | ax6evr 2019 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
5 | 3, 4 | exlimiiv 1935 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 19.8ad 2177 sp 2178 19.2g 2183 19.23bi 2186 nexr 2187 qexmid 2188 nf5r 2189 nf5rOLD 2190 19.9t 2200 ax6e 2383 exdistrf 2447 equvini 2455 sb1OLD 2482 euor2 2615 2moexv 2629 2moswapv 2631 2euexv 2633 2moex 2642 2euex 2643 2moswap 2646 2mo 2650 rspe 3232 ceqex 3574 intab 4906 eusv2nf 5313 copsexgw 5398 copsexg 5399 dmcosseq 5871 dminss 6045 imainss 6046 relssdmrn 6161 oprabidw 7286 oprabid 7287 frrlem8 8080 frrlem10 8082 hta 9586 axextnd 10278 axpowndlem2 10285 axregndlem1 10289 axregnd 10291 fpwwe 10333 reclem2pr 10735 bnj1121 32865 finminlem 34434 amosym1 34542 bj-19.23bit 34800 bj-nexrt 34801 bj-19.9htbi 34812 bj-sbsb 34947 bj-finsumval0 35383 wl-exeq 35620 ax12indn 36884 pm11.58 41897 axc11next 41913 iotavalsb 41940 vk15.4j 42037 onfrALTlem1 42057 onfrALTlem1VD 42399 vk15.4jVD 42423 suprnmpt 42599 ssfiunibd 42738 |
Copyright terms: Public domain | W3C validator |