| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1983 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2184. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v 2179 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alequexv 2001 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
| 4 | ax6evr 2015 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
| 5 | 3, 4 | exlimiiv 1931 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.8ad 2183 sp 2184 19.2g 2189 19.23bi 2192 nexr 2193 qexmid 2194 nf5r 2195 19.9t 2205 ax6e 2381 exdistrf 2445 equvini 2453 euor2 2606 2moexv 2620 2moswapv 2622 2euexv 2624 2moex 2633 2euex 2634 2moswap 2637 2mo 2641 rspe 3219 ceqex 3609 intab 4931 eusv2nf 5337 copsexgw 5437 copsexg 5438 dmcosseqOLD 5924 dmcosseqOLDOLD 5925 dminss 6106 imainss 6107 oprabidw 7384 oprabid 7385 frrlem8 8233 frrlem10 8235 hta 9812 axextnd 10504 axpowndlem2 10511 axregndlem1 10515 axregnd 10517 fpwwe 10559 reclem2pr 10961 bnj1121 34954 finminlem 36294 bj-19.23bit 36667 bj-nexrt 36668 bj-19.9htbi 36679 bj-sbsb 36813 bj-finsumval0 37261 wl-exeq 37510 mopickr 38333 ax12indn 38924 pm11.58 44366 axc11next 44382 iotavalsb 44409 vk15.4j 44505 onfrALTlem1 44525 onfrALTlem1VD 44866 vk15.4jVD 44890 suprnmpt 45155 ssfiunibd 45294 pgind 49706 |
| Copyright terms: Public domain | W3C validator |