| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1983 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2184. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v 2179 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alequexv 2001 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
| 4 | ax6evr 2015 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
| 5 | 3, 4 | exlimiiv 1931 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.8ad 2183 sp 2184 19.2g 2189 19.23bi 2192 nexr 2193 qexmid 2194 nf5r 2195 19.9t 2205 ax6e 2388 exdistrf 2452 equvini 2460 euor2 2613 2moexv 2627 2moswapv 2629 2euexv 2631 2moex 2640 2euex 2641 2moswap 2644 2mo 2648 rspe 3236 ceqex 3636 intab 4959 eusv2nf 5370 copsexgw 5470 copsexg 5471 dmcosseq 5961 dmcosseqOLD 5962 dminss 6147 imainss 6148 relssdmrnOLD 6263 oprabidw 7441 oprabid 7442 frrlem8 8297 frrlem10 8299 hta 9916 axextnd 10610 axpowndlem2 10617 axregndlem1 10621 axregnd 10623 fpwwe 10665 reclem2pr 11067 bnj1121 35021 finminlem 36341 bj-19.23bit 36714 bj-nexrt 36715 bj-19.9htbi 36726 bj-sbsb 36860 bj-finsumval0 37308 wl-exeq 37557 mopickr 38386 ax12indn 38966 pm11.58 44381 axc11next 44397 iotavalsb 44424 vk15.4j 44520 onfrALTlem1 44540 onfrALTlem1VD 44881 vk15.4jVD 44905 suprnmpt 45165 ssfiunibd 45305 pgind 49548 |
| Copyright terms: Public domain | W3C validator |