| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1983 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2184. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v 2179 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alequexv 2001 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
| 4 | ax6evr 2015 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
| 5 | 3, 4 | exlimiiv 1931 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.8ad 2183 sp 2184 19.2g 2189 19.23bi 2192 nexr 2193 qexmid 2194 nf5r 2195 19.9t 2205 ax6e 2381 exdistrf 2445 equvini 2453 euor2 2606 2moexv 2620 2moswapv 2622 2euexv 2624 2moex 2633 2euex 2634 2moswap 2637 2mo 2641 rspe 3227 ceqex 3618 intab 4942 eusv2nf 5350 copsexgw 5450 copsexg 5451 dmcosseq 5940 dmcosseqOLD 5941 dminss 6126 imainss 6127 relssdmrnOLD 6242 oprabidw 7418 oprabid 7419 frrlem8 8272 frrlem10 8274 hta 9850 axextnd 10544 axpowndlem2 10551 axregndlem1 10555 axregnd 10557 fpwwe 10599 reclem2pr 11001 bnj1121 34975 finminlem 36306 bj-19.23bit 36679 bj-nexrt 36680 bj-19.9htbi 36691 bj-sbsb 36825 bj-finsumval0 37273 wl-exeq 37522 mopickr 38345 ax12indn 38936 pm11.58 44379 axc11next 44395 iotavalsb 44422 vk15.4j 44518 onfrALTlem1 44538 onfrALTlem1VD 44879 vk15.4jVD 44903 suprnmpt 45168 ssfiunibd 45307 pgind 49703 |
| Copyright terms: Public domain | W3C validator |