![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 2064 for a version with a dv condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2207. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2204 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | ax6ev 2059 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
3 | exim 1909 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑)) | |
4 | 1, 2, 3 | syl6mpi 67 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
5 | ax6evr 2100 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
6 | 4, 5 | exlimiiv 2011 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1629 ∃wex 1852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-ex 1853 |
This theorem is referenced by: sp 2207 19.2g 2212 19.23bi 2215 nexr 2216 qexmid 2217 nf5r 2218 19.9t 2227 sbequ1 2266 19.9tOLD 2366 ax6e 2412 exdistrf 2483 equvini 2492 2ax6e 2598 euor2 2663 2moex 2692 2euex 2693 2moswap 2696 2mo 2700 rspe 3151 ceqex 3483 mo2icl 3537 intab 4641 eusv2nf 4995 copsexg 5083 dmcosseq 5525 dminss 5688 imainss 5689 relssdmrn 5800 oprabid 6822 hta 8924 domtriomlem 9466 axextnd 9615 axrepnd 9618 axunndlem1 9619 axunnd 9620 axpowndlem2 9622 axpownd 9625 axregndlem1 9626 axregnd 9628 axacndlem1 9631 axacndlem2 9632 axacndlem3 9633 axacndlem4 9634 axacndlem5 9635 axacnd 9636 fpwwe 9670 pwfseqlem4a 9685 pwfseqlem4 9686 reclem2pr 10072 bnj1121 31391 bnj1189 31415 frrlem11 32129 finminlem 32649 amosym1 32762 bj-ssbft 32979 bj-19.23bit 33018 bj-nexrt 33019 bj-19.9htbi 33031 bj-sbsb 33159 bj-finsumval0 33484 isbasisrelowllem1 33540 isbasisrelowllem2 33541 wl-exeq 33656 ax12indn 34751 gneispace 38958 pm11.58 39116 axc11next 39133 iotavalsb 39160 vk15.4j 39259 onfrALTlem1 39288 onfrALTlem1VD 39648 vk15.4jVD 39672 suprnmpt 39875 ssfiunibd 40040 ovncvrrp 41298 19.8ad 42989 |
Copyright terms: Public domain | W3C validator |