![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1982 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2184. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2179 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 2000 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
4 | ax6evr 2014 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
5 | 3, 4 | exlimiiv 1930 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 19.8ad 2183 sp 2184 19.2g 2189 19.23bi 2192 nexr 2193 qexmid 2194 nf5r 2195 19.9t 2205 ax6e 2391 exdistrf 2455 equvini 2463 euor2 2616 2moexv 2630 2moswapv 2632 2euexv 2634 2moex 2643 2euex 2644 2moswap 2647 2mo 2651 rspe 3255 ceqex 3665 intab 5002 eusv2nf 5413 copsexgw 5510 copsexg 5511 dmcosseq 5999 dmcosseqOLD 6000 dminss 6184 imainss 6185 relssdmrnOLD 6300 oprabidw 7479 oprabid 7480 frrlem8 8334 frrlem10 8336 hta 9966 axextnd 10660 axpowndlem2 10667 axregndlem1 10671 axregnd 10673 fpwwe 10715 reclem2pr 11117 bnj1121 34961 finminlem 36284 bj-19.23bit 36657 bj-nexrt 36658 bj-19.9htbi 36669 bj-sbsb 36803 bj-finsumval0 37251 wl-exeq 37488 mopickr 38319 ax12indn 38899 pm11.58 44359 axc11next 44375 iotavalsb 44402 vk15.4j 44499 onfrALTlem1 44519 onfrALTlem1VD 44861 vk15.4jVD 44885 suprnmpt 45081 ssfiunibd 45224 pgind 48809 |
Copyright terms: Public domain | W3C validator |