| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1983 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2184. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v 2179 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alequexv 2001 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
| 4 | ax6evr 2015 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
| 5 | 3, 4 | exlimiiv 1931 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.8ad 2183 sp 2184 19.2g 2189 19.23bi 2192 nexr 2193 qexmid 2194 nf5r 2195 19.9t 2205 ax6e 2381 exdistrf 2445 equvini 2453 euor2 2606 2moexv 2620 2moswapv 2622 2euexv 2624 2moex 2633 2euex 2634 2moswap 2637 2mo 2641 rspe 3225 ceqex 3615 intab 4938 eusv2nf 5345 copsexgw 5445 copsexg 5446 dmcosseq 5929 dmcosseqOLD 5930 dminss 6114 imainss 6115 relssdmrnOLD 6230 oprabidw 7400 oprabid 7401 frrlem8 8249 frrlem10 8251 hta 9826 axextnd 10520 axpowndlem2 10527 axregndlem1 10531 axregnd 10533 fpwwe 10575 reclem2pr 10977 bnj1121 34948 finminlem 36279 bj-19.23bit 36652 bj-nexrt 36653 bj-19.9htbi 36664 bj-sbsb 36798 bj-finsumval0 37246 wl-exeq 37495 mopickr 38318 ax12indn 38909 pm11.58 44352 axc11next 44368 iotavalsb 44395 vk15.4j 44491 onfrALTlem1 44511 onfrALTlem1VD 44852 vk15.4jVD 44876 suprnmpt 45141 ssfiunibd 45280 pgind 49679 |
| Copyright terms: Public domain | W3C validator |