Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1992 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2184. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2180 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 2012 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
4 | ax6evr 2027 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
5 | 3, 4 | exlimiiv 1938 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-ex 1787 |
This theorem is referenced by: 19.8ad 2183 sp 2184 19.2g 2189 19.23bi 2192 nexr 2193 qexmid 2194 nf5r 2195 nf5rOLD 2196 19.9t 2206 ax6e 2383 exdistrf 2447 equvini 2455 sb1OLD 2482 euor2 2616 2moexv 2630 2moswapv 2632 2euexv 2634 2moex 2643 2euex 2644 2moswap 2647 2mo 2651 rspe 3214 ceqex 3548 mo2icl 3613 intab 4866 eusv2nf 5262 copsexgw 5347 copsexg 5348 dmcosseq 5816 dminss 5985 imainss 5986 relssdmrn 6101 oprabidw 7201 oprabid 7202 hta 9399 axextnd 10091 axpowndlem2 10098 axregndlem1 10102 axregnd 10104 fpwwe 10146 reclem2pr 10548 bnj1121 32536 frrlem8 33448 frrlem10 33450 finminlem 34145 amosym1 34253 bj-19.23bit 34511 bj-nexrt 34512 bj-19.9htbi 34523 bj-sbsb 34651 bj-finsumval0 35077 wl-exeq 35316 ax12indn 36580 pm11.58 41546 axc11next 41562 iotavalsb 41589 vk15.4j 41686 onfrALTlem1 41706 onfrALTlem1VD 42048 vk15.4jVD 42072 suprnmpt 42248 ssfiunibd 42386 |
Copyright terms: Public domain | W3C validator |