Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1986 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2176. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2172 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 2004 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
4 | ax6evr 2018 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
5 | 3, 4 | exlimiiv 1934 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 19.8ad 2175 sp 2176 19.2g 2181 19.23bi 2184 nexr 2185 qexmid 2186 nf5r 2187 19.9t 2197 ax6e 2383 exdistrf 2447 equvini 2455 sb1OLD 2482 euor2 2615 2moexv 2629 2moswapv 2631 2euexv 2633 2moex 2642 2euex 2643 2moswap 2646 2mo 2650 rspe 3237 ceqex 3582 intab 4909 eusv2nf 5318 copsexgw 5404 copsexg 5405 dmcosseq 5882 dminss 6056 imainss 6057 relssdmrn 6172 oprabidw 7306 oprabid 7307 frrlem8 8109 frrlem10 8111 hta 9655 axextnd 10347 axpowndlem2 10354 axregndlem1 10358 axregnd 10360 fpwwe 10402 reclem2pr 10804 bnj1121 32965 finminlem 34507 amosym1 34615 bj-19.23bit 34873 bj-nexrt 34874 bj-19.9htbi 34885 bj-sbsb 35020 bj-finsumval0 35456 wl-exeq 35693 ax12indn 36957 pm11.58 42008 axc11next 42024 iotavalsb 42051 vk15.4j 42148 onfrALTlem1 42168 onfrALTlem1VD 42510 vk15.4jVD 42534 suprnmpt 42710 ssfiunibd 42848 |
Copyright terms: Public domain | W3C validator |