| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1984 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2188. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v 2183 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alequexv 2002 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
| 4 | ax6evr 2016 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
| 5 | 3, 4 | exlimiiv 1932 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.8ad 2187 sp 2188 19.2g 2193 19.23bi 2196 nexr 2197 qexmid 2198 nf5r 2199 19.9t 2209 ax6e 2385 exdistrf 2449 equvini 2457 euor2 2610 2moexv 2624 2moswapv 2626 2euexv 2628 2moex 2637 2euex 2638 2moswap 2641 2mo 2645 rspe 3223 ceqex 3603 intab 4930 eusv2nf 5337 copsexgw 5435 copsexg 5436 dmcosseqOLD 5925 dmcosseqOLDOLD 5926 dminss 6108 imainss 6109 oprabidw 7386 oprabid 7387 frrlem8 8232 frrlem10 8234 hta 9801 axextnd 10493 axpowndlem2 10500 axregndlem1 10504 axregnd 10506 fpwwe 10548 reclem2pr 10950 bnj1121 35069 finminlem 36434 bj-19.23bit 36808 bj-nexrt 36809 bj-19.9htbi 36820 bj-sbsb 36954 bj-finsumval0 37402 wl-exeq 37651 mopickr 38468 ax12indn 39115 pm11.58 44547 axc11next 44563 iotavalsb 44590 vk15.4j 44685 onfrALTlem1 44705 onfrALTlem1VD 45046 vk15.4jVD 45070 suprnmpt 45334 ssfiunibd 45473 pgind 49878 |
| Copyright terms: Public domain | W3C validator |