![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1979 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2180. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2175 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 1997 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
4 | ax6evr 2011 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
5 | 3, 4 | exlimiiv 1928 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: 19.8ad 2179 sp 2180 19.2g 2185 19.23bi 2188 nexr 2189 qexmid 2190 nf5r 2191 19.9t 2201 ax6e 2385 exdistrf 2449 equvini 2457 euor2 2610 2moexv 2624 2moswapv 2626 2euexv 2628 2moex 2637 2euex 2638 2moswap 2641 2mo 2645 rspe 3246 ceqex 3651 intab 4982 eusv2nf 5400 copsexgw 5500 copsexg 5501 dmcosseq 5989 dmcosseqOLD 5990 dminss 6174 imainss 6175 relssdmrnOLD 6290 oprabidw 7461 oprabid 7462 frrlem8 8316 frrlem10 8318 hta 9934 axextnd 10628 axpowndlem2 10635 axregndlem1 10639 axregnd 10641 fpwwe 10683 reclem2pr 11085 bnj1121 34977 finminlem 36300 bj-19.23bit 36673 bj-nexrt 36674 bj-19.9htbi 36685 bj-sbsb 36819 bj-finsumval0 37267 wl-exeq 37514 mopickr 38344 ax12indn 38924 pm11.58 44385 axc11next 44401 iotavalsb 44428 vk15.4j 44525 onfrALTlem1 44545 onfrALTlem1VD 44887 vk15.4jVD 44911 suprnmpt 45116 ssfiunibd 45259 pgind 48947 |
Copyright terms: Public domain | W3C validator |