![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version |
Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1987 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2177. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12v 2173 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | alequexv 2005 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
4 | ax6evr 2019 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
5 | 3, 4 | exlimiiv 1935 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 19.8ad 2176 sp 2177 19.2g 2182 19.23bi 2185 nexr 2186 qexmid 2187 nf5r 2188 19.9t 2198 ax6e 2383 exdistrf 2447 equvini 2455 euor2 2610 2moexv 2624 2moswapv 2626 2euexv 2628 2moex 2637 2euex 2638 2moswap 2641 2mo 2645 rspe 3247 ceqex 3641 intab 4983 eusv2nf 5394 copsexgw 5491 copsexg 5492 dmcosseq 5973 dminss 6153 imainss 6154 relssdmrnOLD 6269 oprabidw 7440 oprabid 7441 frrlem8 8278 frrlem10 8280 hta 9892 axextnd 10586 axpowndlem2 10593 axregndlem1 10597 axregnd 10599 fpwwe 10641 reclem2pr 11043 bnj1121 33996 finminlem 35203 bj-19.23bit 35569 bj-nexrt 35570 bj-19.9htbi 35581 bj-sbsb 35715 bj-finsumval0 36166 wl-exeq 36403 mopickr 37232 ax12indn 37813 pm11.58 43149 axc11next 43165 iotavalsb 43192 vk15.4j 43289 onfrALTlem1 43309 onfrALTlem1VD 43651 vk15.4jVD 43675 suprnmpt 43870 ssfiunibd 44019 pgind 47762 |
Copyright terms: Public domain | W3C validator |