| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.8a | Structured version Visualization version GIF version | ||
| Description: If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. See 19.8v 1984 for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 9-Jan-1993.) Allow a shortening of sp 2186. (Revised by Wolf Lammen, 13-Jan-2018.) (Proof shortened by Wolf Lammen, 8-Dec-2019.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v 2181 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | alequexv 2002 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → ∃𝑥𝜑)) |
| 4 | ax6evr 2016 | . 2 ⊢ ∃𝑦 𝑥 = 𝑦 | |
| 5 | 3, 4 | exlimiiv 1932 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.8ad 2185 sp 2186 19.2g 2191 19.23bi 2194 nexr 2195 qexmid 2196 nf5r 2197 19.9t 2207 ax6e 2383 exdistrf 2447 equvini 2455 euor2 2608 2moexv 2622 2moswapv 2624 2euexv 2626 2moex 2635 2euex 2636 2moswap 2639 2mo 2643 rspe 3222 ceqex 3602 intab 4923 eusv2nf 5328 copsexgw 5425 copsexg 5426 dmcosseqOLD 5913 dmcosseqOLDOLD 5914 dminss 6095 imainss 6096 oprabidw 7372 oprabid 7373 frrlem8 8218 frrlem10 8220 hta 9785 axextnd 10477 axpowndlem2 10484 axregndlem1 10488 axregnd 10490 fpwwe 10532 reclem2pr 10934 bnj1121 34989 finminlem 36352 bj-19.23bit 36725 bj-nexrt 36726 bj-19.9htbi 36737 bj-sbsb 36871 bj-finsumval0 37319 wl-exeq 37568 mopickr 38391 ax12indn 38982 pm11.58 44423 axc11next 44439 iotavalsb 44466 vk15.4j 44561 onfrALTlem1 44581 onfrALTlem1VD 44922 vk15.4jVD 44946 suprnmpt 45211 ssfiunibd 45350 pgind 49749 |
| Copyright terms: Public domain | W3C validator |