MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf4 Structured version   Visualization version   GIF version

Theorem nf4 1790
Description: Alternate definition of nonfreeness. This definition uses only primitive symbols (→ , ¬ , ∀). (Contributed by BJ, 16-Sep-2021.)
Assertion
Ref Expression
nf4 (Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))

Proof of Theorem nf4
StepHypRef Expression
1 nf3 1789 . 2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
2 df-or 845 . 2 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
31, 2bitri 274 1 (Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfnbi  1857
  Copyright terms: Public domain W3C validator