Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnbi | Structured version Visualization version GIF version |
Description: A variable is nonfree in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.) (Proof shortened by Wolf Lammen, 6-Oct-2024.) |
Ref | Expression |
---|---|
nfnbi | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal 1830 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
2 | 1 | imbi1i 349 | . 2 ⊢ ((∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) |
3 | df-nf 1788 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ (∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
4 | nf4 1791 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) | |
5 | 2, 3, 4 | 3bitr4ri 303 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfnt 1860 wl-sb8et 35635 |
Copyright terms: Public domain | W3C validator |