MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnbi Structured version   Visualization version   GIF version

Theorem nfnbi 1853
Description: A variable is nonfree in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.) (Proof shortened by Wolf Lammen, 6-Oct-2024.)
Assertion
Ref Expression
nfnbi (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem nfnbi
StepHypRef Expression
1 exnal 1825 . . 3 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
21imbi1i 349 . 2 ((∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
3 df-nf 1782 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ (∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑))
4 nf4 1785 . 2 (Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
52, 3, 43bitr4ri 304 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfnt  1855  wl-sb8et  37507
  Copyright terms: Public domain W3C validator