|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfnbi | Structured version Visualization version GIF version | ||
| Description: A variable is nonfree in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.) (Proof shortened by Wolf Lammen, 6-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| nfnbi | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exnal 1826 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) | 
| 3 | df-nf 1783 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ (∃𝑥 ¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 4 | nf4 1786 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4ri 304 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: nfnt 1855 wl-sb8et 37555 | 
| Copyright terms: Public domain | W3C validator |