MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfntht2 Structured version   Visualization version   GIF version

Theorem nfntht2 1797
Description: Closed form of nfnth 1805. (Contributed by BJ, 16-Sep-2021.) (Proof shortened by Wolf Lammen, 4-Sep-2022.)
Assertion
Ref Expression
nfntht2 (∀𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)

Proof of Theorem nfntht2
StepHypRef Expression
1 alnex 1784 . 2 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
2 nfntht 1796 . 2 (¬ ∃𝑥𝜑 → Ⅎ𝑥𝜑)
31, 2sylbi 216 1 (∀𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfnth  1805
  Copyright terms: Public domain W3C validator