MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnth Structured version   Visualization version   GIF version

Theorem nfnth 1805
Description: No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.) df-nf 1787 changed. (Revised by Wolf Lammen, 12-Sep-2021.)
Hypothesis
Ref Expression
nfnth.1 ¬ 𝜑
Assertion
Ref Expression
nfnth 𝑥𝜑

Proof of Theorem nfnth
StepHypRef Expression
1 nfntht2 1797 . 2 (∀𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)
2 nfnth.1 . 2 ¬ 𝜑
31, 2mpg 1800 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  nffal  1808  nd1  10343  nd2  10344
  Copyright terms: Public domain W3C validator