| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1827 (but does not depend on ax-4 1809 contrary to it). See also the dual pair df-ex 1780 / alex 1826. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nf3 1786 nfntht2 1794 nex 1800 alex 1826 2exnaln 1829 aleximi 1832 19.38 1839 alinexa 1843 alexn 1845 nexdh 1865 19.43 1882 19.43OLD 1883 19.33b 1885 empty 1906 cbvexdvaw 2039 19.8aw 2051 nsb 2107 cbvexdw 2337 cbvexv1 2340 cbvex 2397 cbvexd 2406 dfmoeu 2529 nexmo 2534 euae 2653 ralnex 3055 cbvexeqsetf 3462 mo2icl 3685 n0el 4327 falseral0 4479 disjsn 4675 axpr 5382 axprlem5OLD 5385 dm0rn0 5888 reldm0 5891 iotanul 6489 imadif 6600 dffv2 6956 kmlem4 10107 axpowndlem3 10552 axpownd 10554 hashgt0elex 14366 zrninitoringc 20585 nmo 32419 bnj1143 34780 unbdqndv1 36496 bj-nexdh 36616 axc11n11r 36671 bj-hbntbi 36692 bj-modal4e 36703 wl-nfeqfb 37524 wl-sb8eft 37539 wl-sb8et 37541 wl-lem-nexmo 37555 wl-issetft 37570 hashnexinj 42116 eu6w 42664 onsupmaxb 43228 pm10.251 44349 pm10.57 44360 elnev 44427 spr0nelg 47474 usgrexmpl12ngric 48026 alimp-no-surprise 49767 |
| Copyright terms: Public domain | W3C validator |