| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1827 (but does not depend on ax-4 1809 contrary to it). See also the dual pair df-ex 1780 / alex 1826. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nf3 1786 nfntht2 1794 nex 1800 alex 1826 2exnaln 1829 aleximi 1832 19.38 1839 alinexa 1843 alexn 1845 nexdh 1865 19.43 1882 19.43OLD 1883 19.33b 1885 empty 1906 cbvexdvaw 2039 19.8aw 2051 nsb 2107 cbvexdw 2337 cbvexv1 2340 cbvex 2397 cbvexd 2406 dfmoeu 2529 nexmo 2534 euae 2653 ralnex 3055 cbvexeqsetf 3459 mo2icl 3682 n0el 4323 falseral0 4475 disjsn 4671 axpr 5377 axprlem5OLD 5380 dm0rn0 5878 reldm0 5881 iotanul 6477 imadif 6584 dffv2 6938 kmlem4 10083 axpowndlem3 10528 axpownd 10530 hashgt0elex 14342 zrninitoringc 20596 nmo 32469 bnj1143 34773 unbdqndv1 36489 bj-nexdh 36609 axc11n11r 36664 bj-hbntbi 36685 bj-modal4e 36696 wl-nfeqfb 37517 wl-sb8eft 37532 wl-sb8et 37534 wl-lem-nexmo 37548 wl-issetft 37563 hashnexinj 42109 eu6w 42657 onsupmaxb 43221 pm10.251 44342 pm10.57 44353 elnev 44420 spr0nelg 47470 usgrexmpl12ngric 48022 alimp-no-surprise 49763 |
| Copyright terms: Public domain | W3C validator |