![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1827 (but does not depend on ax-4 1809 contrary to it). See also the dual pair df-ex 1780 / alex 1826. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 356 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ex 1780 |
This theorem is referenced by: nf3 1786 nfntht2 1794 nex 1800 alex 1826 2exnaln 1829 aleximi 1832 19.38 1839 alinexa 1843 alexn 1845 nexdh 1866 19.43 1883 19.43OLD 1884 19.33b 1886 empty 1907 cbvexdvaw 2040 19.8aw 2051 nsb 2102 cbvexdw 2333 cbvexv1 2336 cbvex 2396 cbvexd 2405 dfmoeu 2528 nexmo 2533 euae 2653 ralnex 3070 issetft 3486 mo2icl 3711 n0el 4362 falseral0 4520 disjsn 4716 axprlem5 5426 dm0rn0 5925 reldm0 5928 iotanul 6522 imadif 6633 dffv2 6987 kmlem4 10152 axpowndlem3 10598 axpownd 10600 hashgt0elex 14367 nmo 31995 bnj1143 34097 unbdqndv1 35689 bj-nexdh 35810 axc11n11r 35866 bj-hbntbi 35887 bj-modal4e 35898 wl-nfeqfb 36710 wl-sb8et 36723 wl-lem-nexmo 36737 wl-issetft 36749 onsupmaxb 42292 pm10.251 43423 pm10.57 43434 elnev 43501 spr0nelg 46444 zrninitoringc 47059 alimp-no-surprise 47917 |
Copyright terms: Public domain | W3C validator |