| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1827 (but does not depend on ax-4 1809 contrary to it). See also the dual pair df-ex 1780 / alex 1826. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nf3 1786 nfntht2 1794 nex 1800 alex 1826 2exnaln 1829 aleximi 1832 19.38 1839 alinexa 1843 alexn 1845 nexdh 1865 19.43 1882 19.43OLD 1883 19.33b 1885 empty 1906 cbvexdvaw 2039 19.8aw 2051 nsb 2107 cbvexdw 2337 cbvexv1 2340 cbvex 2397 cbvexd 2406 dfmoeu 2529 nexmo 2534 euae 2653 ralnex 3055 cbvexeqsetf 3451 mo2icl 3674 n0el 4315 falseral0 4467 disjsn 4663 axpr 5366 axprlem5OLD 5369 dm0rn0 5867 reldm0 5870 iotanul 6462 imadif 6566 dffv2 6918 kmlem4 10048 axpowndlem3 10493 axpownd 10495 hashgt0elex 14308 zrninitoringc 20561 nmo 32434 bnj1143 34757 axregs 35074 unbdqndv1 36482 bj-nexdh 36602 axc11n11r 36657 bj-hbntbi 36678 bj-modal4e 36689 wl-nfeqfb 37510 wl-sb8eft 37525 wl-sb8et 37527 wl-lem-nexmo 37541 wl-issetft 37556 hashnexinj 42101 eu6w 42649 onsupmaxb 43212 pm10.251 44333 pm10.57 44344 elnev 44411 spr0nelg 47460 usgrexmpl12ngric 48022 alimp-no-surprise 49766 |
| Copyright terms: Public domain | W3C validator |