| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1827 (but does not depend on ax-4 1809 contrary to it). See also the dual pair df-ex 1780 / alex 1826. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nf3 1786 nfntht2 1794 nex 1800 alex 1826 2exnaln 1829 aleximi 1832 19.38 1839 alinexa 1843 alexn 1845 nexdh 1865 19.43 1882 19.43OLD 1883 19.33b 1885 empty 1906 cbvexdvaw 2039 19.8aw 2051 nsb 2107 cbvexdw 2341 cbvexv1 2344 cbvex 2404 cbvexd 2413 dfmoeu 2536 nexmo 2541 euae 2660 ralnex 3063 cbvexeqsetf 3479 mo2icl 3702 n0el 4344 falseral0 4496 disjsn 4692 axpr 5402 axprlem5OLD 5405 dm0rn0 5909 reldm0 5912 iotanul 6514 imadif 6625 dffv2 6979 kmlem4 10173 axpowndlem3 10618 axpownd 10620 hashgt0elex 14424 zrninitoringc 20641 nmo 32476 bnj1143 34826 unbdqndv1 36531 bj-nexdh 36651 axc11n11r 36706 bj-hbntbi 36727 bj-modal4e 36738 wl-nfeqfb 37559 wl-sb8eft 37574 wl-sb8et 37576 wl-lem-nexmo 37590 wl-issetft 37605 hashnexinj 42146 eu6w 42666 onsupmaxb 43230 pm10.251 44351 pm10.57 44362 elnev 44429 spr0nelg 47457 usgrexmpl12ngric 48009 alimp-no-surprise 49612 |
| Copyright terms: Public domain | W3C validator |