![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1830 (but does not depend on ax-4 1812 contrary to it). See also the dual pair df-ex 1783 / alex 1829. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 358 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: nf3 1789 nfntht2 1797 nex 1803 alex 1829 2exnaln 1832 aleximi 1835 19.38 1842 alinexa 1846 alexn 1848 nexdh 1869 19.43 1886 19.43OLD 1887 19.33b 1889 empty 1910 cbvexdvaw 2043 19.8aw 2054 nsb 2105 cbvexdw 2336 cbvexv1 2339 cbvex 2399 cbvexd 2408 dfmoeu 2531 nexmo 2536 euae 2656 ralnex 3073 vtoclgft 3541 mo2icl 3711 n0el 4362 falseral0 4520 disjsn 4716 axprlem5 5426 dm0rn0 5925 reldm0 5928 iotanul 6522 imadif 6633 dffv2 6987 kmlem4 10148 axpowndlem3 10594 axpownd 10596 hashgt0elex 14361 nmo 31730 bnj1143 33801 unbdqndv1 35384 bj-nexdh 35505 axc11n11r 35561 bj-hbntbi 35582 bj-modal4e 35593 wl-nfeqfb 36405 wl-sb8et 36418 wl-lem-nexmo 36432 wl-issetft 36444 onsupmaxb 41988 pm10.251 43119 pm10.57 43130 elnev 43197 spr0nelg 46144 zrninitoringc 46969 alimp-no-surprise 47828 |
Copyright terms: Public domain | W3C validator |