| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1827 (but does not depend on ax-4 1809 contrary to it). See also the dual pair df-ex 1780 / alex 1826. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nf3 1786 nfntht2 1794 nex 1800 alex 1826 2exnaln 1829 aleximi 1832 19.38 1839 alinexa 1843 alexn 1845 nexdh 1865 19.43 1882 19.43OLD 1883 19.33b 1885 empty 1906 cbvexdvaw 2039 19.8aw 2051 nsb 2107 cbvexdw 2337 cbvexv1 2340 cbvex 2397 cbvexd 2406 dfmoeu 2529 nexmo 2534 euae 2653 ralnex 3055 cbvexeqsetf 3459 mo2icl 3682 n0el 4323 falseral0 4475 disjsn 4671 axpr 5377 axprlem5OLD 5380 dm0rn0 5878 reldm0 5881 iotanul 6477 imadif 6584 dffv2 6938 kmlem4 10083 axpowndlem3 10528 axpownd 10530 hashgt0elex 14342 zrninitoringc 20561 nmo 32392 bnj1143 34753 unbdqndv1 36469 bj-nexdh 36589 axc11n11r 36644 bj-hbntbi 36665 bj-modal4e 36676 wl-nfeqfb 37497 wl-sb8eft 37512 wl-sb8et 37514 wl-lem-nexmo 37528 wl-issetft 37543 hashnexinj 42089 eu6w 42637 onsupmaxb 43201 pm10.251 44322 pm10.57 44333 elnev 44400 spr0nelg 47450 usgrexmpl12ngric 48002 alimp-no-surprise 49743 |
| Copyright terms: Public domain | W3C validator |