| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1826 (but does not depend on ax-4 1808 contrary to it). See also the dual pair df-ex 1779 / alex 1825. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1779 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: nf3 1785 nfntht2 1793 nex 1799 alex 1825 2exnaln 1828 aleximi 1831 19.38 1838 alinexa 1842 alexn 1844 nexdh 1864 19.43 1881 19.43OLD 1882 19.33b 1884 empty 1905 cbvexdvaw 2037 19.8aw 2049 nsb 2105 cbvexdw 2339 cbvexv1 2342 cbvex 2402 cbvexd 2411 dfmoeu 2534 nexmo 2539 euae 2658 ralnex 3061 cbvexeqsetf 3478 mo2icl 3702 n0el 4344 falseral0 4496 disjsn 4691 axpr 5407 axprlem5OLD 5410 dm0rn0 5915 reldm0 5918 iotanul 6519 imadif 6630 dffv2 6984 kmlem4 10176 axpowndlem3 10621 axpownd 10623 hashgt0elex 14422 zrninitoringc 20644 nmo 32437 bnj1143 34763 unbdqndv1 36468 bj-nexdh 36588 axc11n11r 36643 bj-hbntbi 36664 bj-modal4e 36675 wl-nfeqfb 37496 wl-sb8eft 37511 wl-sb8et 37513 wl-lem-nexmo 37527 wl-issetft 37542 hashnexinj 42088 eu6w 42649 onsupmaxb 43214 pm10.251 44336 pm10.57 44347 elnev 44414 spr0nelg 47421 usgrexmpl12ngric 47955 alimp-no-surprise 49308 |
| Copyright terms: Public domain | W3C validator |