| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1828 (but does not depend on ax-4 1810 contrary to it). See also the dual pair df-ex 1781 / alex 1827. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1781 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: nf3 1787 nfntht2 1795 nex 1801 alex 1827 2exnaln 1830 aleximi 1833 19.38 1840 alinexa 1844 alexn 1846 nexdh 1866 19.43 1883 19.43OLD 1884 19.33b 1886 empty 1907 cbvexdvaw 2040 19.8aw 2053 nsb 2109 cbvexdw 2339 cbvexv1 2342 cbvex 2399 cbvexd 2408 dfmoeu 2531 nexmo 2536 euae 2655 ralnex 3058 cbvexeqsetf 3451 mo2icl 3668 n0el 4311 falseral0 4463 disjsn 4661 axpr 5363 axprlem5OLD 5366 dm0rn0 5863 dm0rn0OLD 5864 reldm0 5867 iotanul 6461 imadif 6565 dffv2 6917 kmlem4 10045 axpowndlem3 10490 axpownd 10492 hashgt0elex 14308 zrninitoringc 20591 nmo 32469 bnj1143 34802 axregs 35145 unbdqndv1 36550 bj-nexdh 36670 axc11n11r 36725 bj-hbntbi 36746 bj-modal4e 36757 wl-nfeqfb 37578 wl-sb8eft 37593 wl-sb8et 37595 wl-lem-nexmo 37609 wl-issetft 37624 hashnexinj 42169 eu6w 42717 onsupmaxb 43280 pm10.251 44401 pm10.57 44412 elnev 44478 spr0nelg 47515 usgrexmpl12ngric 48077 alimp-no-surprise 49821 |
| Copyright terms: Public domain | W3C validator |