Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1830 (but does not depend on ax-4 1813 contrary to it). See also the dual pair df-ex 1784 / alex 1829. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1784 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: nf3 1790 nfntht2 1798 nex 1804 alex 1829 2exnaln 1832 aleximi 1835 19.38 1842 alinexa 1846 alexn 1848 nexdh 1869 19.43 1886 19.43OLD 1887 19.33b 1889 empty 1910 cbvexdvaw 2043 19.8aw 2054 nsb 2106 cbvexdw 2338 cbvexv1 2341 cbvex 2399 cbvexd 2408 dfmoeu 2536 nexmo 2541 euae 2661 ralnex 3163 vtoclgft 3482 mo2icl 3644 n0el 4292 falseral0 4447 disjsn 4644 axprlem5 5345 dm0rn0 5823 reldm0 5826 iotanul 6396 imadif 6502 dffv2 6845 kmlem4 9840 axpowndlem3 10286 axpownd 10288 hashgt0elex 14044 nelbOLDOLD 30718 nmo 30739 bnj1143 32670 unbdqndv1 34615 bj-nexdh 34736 axc11n11r 34792 bj-hbntbi 34813 bj-modal4e 34824 wl-nfeqfb 35622 wl-sb8et 35635 wl-lem-nexmo 35649 pm10.251 41867 pm10.57 41878 elnev 41945 spr0nelg 44816 zrninitoringc 45517 alimp-no-surprise 46371 |
Copyright terms: Public domain | W3C validator |