Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1829 (but does not depend on ax-4 1812 contrary to it). See also the dual pair df-ex 1783 / alex 1828. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 358 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: nf3 1789 nfntht2 1797 nex 1803 alex 1828 2exnaln 1831 aleximi 1834 19.38 1841 alinexa 1845 alexn 1847 nexdh 1868 19.43 1885 19.43OLD 1886 19.33b 1888 empty 1909 cbvexdvaw 2042 19.8aw 2053 nsb 2104 cbvexdw 2336 cbvexv1 2339 cbvex 2399 cbvexd 2408 dfmoeu 2536 nexmo 2541 euae 2661 ralnex 3165 vtoclgft 3489 mo2icl 3648 n0el 4295 falseral0 4450 disjsn 4647 axprlem5 5348 dm0rn0 5827 reldm0 5830 iotanul 6404 imadif 6510 dffv2 6855 kmlem4 9919 axpowndlem3 10365 axpownd 10367 hashgt0elex 14126 nelbOLDOLD 30825 nmo 30846 bnj1143 32778 unbdqndv1 34696 bj-nexdh 34817 axc11n11r 34873 bj-hbntbi 34894 bj-modal4e 34905 wl-nfeqfb 35703 wl-sb8et 35716 wl-lem-nexmo 35730 pm10.251 41959 pm10.57 41970 elnev 42037 spr0nelg 44906 zrninitoringc 45607 alimp-no-surprise 46463 |
Copyright terms: Public domain | W3C validator |