Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1829 (but does not depend on ax-4 1812 contrary to it). See also the dual pair df-ex 1783 / alex 1828. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 358 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: nf3 1789 nfntht2 1797 nex 1803 alex 1828 2exnaln 1831 aleximi 1834 19.38 1841 alinexa 1845 alexn 1847 nexdh 1868 19.43 1885 19.43OLD 1886 19.33b 1888 empty 1909 cbvexdvaw 2042 19.8aw 2053 nsb 2104 cbvexdw 2336 cbvexv1 2339 cbvex 2399 cbvexd 2408 dfmoeu 2536 nexmo 2541 euae 2661 ralnex 3167 vtoclgft 3492 mo2icl 3649 n0el 4295 falseral0 4450 disjsn 4647 axprlem5 5350 dm0rn0 5834 reldm0 5837 iotanul 6411 imadif 6518 dffv2 6863 kmlem4 9909 axpowndlem3 10355 axpownd 10357 hashgt0elex 14116 nelbOLDOLD 30817 nmo 30838 bnj1143 32770 unbdqndv1 34688 bj-nexdh 34809 axc11n11r 34865 bj-hbntbi 34886 bj-modal4e 34897 wl-nfeqfb 35695 wl-sb8et 35708 wl-lem-nexmo 35722 pm10.251 41978 pm10.57 41989 elnev 42056 spr0nelg 44928 zrninitoringc 45629 alimp-no-surprise 46485 |
Copyright terms: Public domain | W3C validator |