|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version | ||
| Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1826 (but does not depend on ax-4 1808 contrary to it). See also the dual pair df-ex 1779 / alex 1825. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) | 
| Ref | Expression | 
|---|---|
| alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ex 1779 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: nf3 1785 nfntht2 1793 nex 1799 alex 1825 2exnaln 1828 aleximi 1831 19.38 1838 alinexa 1842 alexn 1844 nexdh 1864 19.43 1881 19.43OLD 1882 19.33b 1884 empty 1905 cbvexdvaw 2037 19.8aw 2049 nsb 2105 cbvexdw 2340 cbvexv1 2343 cbvex 2403 cbvexd 2412 dfmoeu 2535 nexmo 2540 euae 2659 ralnex 3071 cbvexeqsetf 3494 mo2icl 3719 n0el 4363 falseral0 4515 disjsn 4710 axpr 5426 axprlem5OLD 5429 dm0rn0 5934 reldm0 5937 iotanul 6538 imadif 6649 dffv2 7003 kmlem4 10195 axpowndlem3 10640 axpownd 10642 hashgt0elex 14441 zrninitoringc 20677 nmo 32510 bnj1143 34805 unbdqndv1 36510 bj-nexdh 36630 axc11n11r 36685 bj-hbntbi 36706 bj-modal4e 36717 wl-nfeqfb 37538 wl-sb8eft 37553 wl-sb8et 37555 wl-lem-nexmo 37569 wl-issetft 37584 hashnexinj 42130 eu6w 42691 onsupmaxb 43256 pm10.251 44384 pm10.57 44395 elnev 44462 spr0nelg 47468 usgrexmpl12ngric 48002 alimp-no-surprise 49355 | 
| Copyright terms: Public domain | W3C validator |