![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1825 (but does not depend on ax-4 1807 contrary to it). See also the dual pair df-ex 1778 / alex 1824. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1778 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: nf3 1784 nfntht2 1792 nex 1798 alex 1824 2exnaln 1827 aleximi 1830 19.38 1837 alinexa 1841 alexn 1843 nexdh 1864 19.43 1881 19.43OLD 1882 19.33b 1884 empty 1905 cbvexdvaw 2038 19.8aw 2050 nsb 2106 cbvexdw 2345 cbvexv1 2348 cbvex 2407 cbvexd 2416 dfmoeu 2539 nexmo 2544 euae 2663 ralnex 3078 cbvexeqsetf 3503 mo2icl 3736 n0el 4387 falseral0 4539 disjsn 4736 axprlem5 5445 dm0rn0 5949 reldm0 5952 iotanul 6551 imadif 6662 dffv2 7017 kmlem4 10223 axpowndlem3 10668 axpownd 10670 hashgt0elex 14450 zrninitoringc 20698 nmo 32518 bnj1143 34766 unbdqndv1 36474 bj-nexdh 36594 axc11n11r 36649 bj-hbntbi 36670 bj-modal4e 36681 wl-nfeqfb 37490 wl-sb8eft 37505 wl-sb8et 37507 wl-lem-nexmo 37521 wl-issetft 37536 hashnexinj 42085 eu6w 42631 onsupmaxb 43200 pm10.251 44329 pm10.57 44340 elnev 44407 spr0nelg 47350 usgrexmpl12ngric 47853 alimp-no-surprise 48875 |
Copyright terms: Public domain | W3C validator |