![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1824 (but does not depend on ax-4 1806 contrary to it). See also the dual pair df-ex 1777 / alex 1823. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1777 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: nf3 1783 nfntht2 1791 nex 1797 alex 1823 2exnaln 1826 aleximi 1829 19.38 1836 alinexa 1840 alexn 1842 nexdh 1863 19.43 1880 19.43OLD 1881 19.33b 1883 empty 1904 cbvexdvaw 2036 19.8aw 2048 nsb 2104 cbvexdw 2340 cbvexv1 2343 cbvex 2402 cbvexd 2411 dfmoeu 2534 nexmo 2539 euae 2658 ralnex 3070 cbvexeqsetf 3493 mo2icl 3723 n0el 4370 falseral0 4522 disjsn 4716 axpr 5433 axprlem5OLD 5436 dm0rn0 5938 reldm0 5941 iotanul 6541 imadif 6652 dffv2 7004 kmlem4 10192 axpowndlem3 10637 axpownd 10639 hashgt0elex 14437 zrninitoringc 20693 nmo 32518 bnj1143 34783 unbdqndv1 36491 bj-nexdh 36611 axc11n11r 36666 bj-hbntbi 36687 bj-modal4e 36698 wl-nfeqfb 37517 wl-sb8eft 37532 wl-sb8et 37534 wl-lem-nexmo 37548 wl-issetft 37563 hashnexinj 42110 eu6w 42663 onsupmaxb 43228 pm10.251 44356 pm10.57 44367 elnev 44434 spr0nelg 47401 usgrexmpl12ngric 47933 alimp-no-surprise 49012 |
Copyright terms: Public domain | W3C validator |