![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alnex | Structured version Visualization version GIF version |
Description: Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1870 (but does not depend on ax-4 1853 contrary to it). See also the dual pair df-ex 1824 / alex 1869. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
alnex | ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1824 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | 1 | con2bii 349 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∀wal 1599 ∃wex 1823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ex 1824 |
This theorem is referenced by: nf3 1830 nfntht2 1838 nex 1844 alex 1869 2exnaln 1872 aleximi 1875 19.38 1882 alinexa 1888 alexn 1889 nexdh 1910 19.43 1929 19.43OLD 1930 19.33b 1932 cbvex 2369 cbvexv 2371 cbvexd 2373 cbvexdva 2377 nexmo 2552 nexmoOLD 2553 dfmo 2615 euae 2690 ralnex 3174 mo2icl 3597 n0el 4170 falseral0 4302 disjsn 4478 dm0rn0 5589 reldm0 5590 iotanul 6116 imadif 6220 dffv2 6533 kmlem4 9312 axpowndlem3 9758 axpownd 9760 hashgt0elex 13507 iswspthsnon 27209 nmo 29901 bnj1143 31464 unbdqndv1 33085 bj-nexdh 33189 axc11n11r 33266 bj-hbntbi 33287 bj-modal4e 33297 wl-nfeqfb 33920 wl-sb8et 33932 wl-lem-nexmo 33946 wl-dfrexsb 33989 pm10.251 39525 pm10.57 39536 elnev 39604 spr0nelg 42425 zrninitoringc 43096 alimp-no-surprise 43643 |
Copyright terms: Public domain | W3C validator |