Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-mpALT | Structured version Visualization version GIF version |
Description: A direct proof of nic-mp 1674. (Contributed by NM, 30-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-jmin | ⊢ 𝜑 |
nic-jmaj | ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) |
Ref | Expression |
---|---|
nic-mpALT | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-jmin | . 2 ⊢ 𝜑 | |
2 | nic-jmaj | . . . . 5 ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) | |
3 | df-nan 1487 | . . . . . 6 ⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ ¬ (𝜑 ∧ (𝜒 ⊼ 𝜓))) | |
4 | df-nan 1487 | . . . . . . 7 ⊢ ((𝜒 ⊼ 𝜓) ↔ ¬ (𝜒 ∧ 𝜓)) | |
5 | 4 | anbi2i 623 | . . . . . 6 ⊢ ((𝜑 ∧ (𝜒 ⊼ 𝜓)) ↔ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
6 | 3, 5 | xchbinx 334 | . . . . 5 ⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ↔ ¬ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) |
7 | 2, 6 | mpbi 229 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓)) |
8 | iman 402 | . . . 4 ⊢ ((𝜑 → (𝜒 ∧ 𝜓)) ↔ ¬ (𝜑 ∧ ¬ (𝜒 ∧ 𝜓))) | |
9 | 7, 8 | mpbir 230 | . . 3 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
10 | 9 | simprd 496 | . 2 ⊢ (𝜑 → 𝜓) |
11 | 1, 10 | ax-mp 5 | 1 ⊢ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ⊼ wnan 1486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-nan 1487 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |