| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1672 nic-axALT 1674 rexanali 3086 difdif 4106 dfss4 4240 difin 4243 ssdif0 4337 difin0ss 4344 inssdif0 4345 dfif2 4498 dffv2 6963 tfinds 7844 sdom0 9085 domtriord 9100 sdom1 9207 inf3lem3 9601 nominpos 12435 isprm3 16659 vdwlem13 16970 vdwnn 16975 psgnunilem4 19433 efgredlem 19683 efgred 19684 ufinffr 23822 ptcmplem5 23949 nmoleub2lem2 25022 ellogdm 26555 pntpbnd 27506 cvbr2 32219 cvnbtwn2 32223 cvnbtwn3 32224 cvnbtwn4 32225 chpssati 32299 chrelat2i 32301 chrelat3 32307 bnj1476 34845 bnj110 34856 bnj1388 35031 dff15 35082 df3nandALT1 36384 imnand2 36387 bj-andnotim 36573 lindsenlbs 37606 poimirlem11 37622 poimirlem12 37623 fdc 37736 lpssat 38998 lssat 39001 lcvbr2 39007 lcvbr3 39008 lcvnbtwn2 39012 lcvnbtwn3 39013 cvrval2 39259 cvrnbtwn2 39260 cvrnbtwn3 39261 cvrnbtwn4 39264 atlrelat1 39306 hlrelat2 39389 dihglblem6 41326 hashnexinj 42108 naddgeoa 43355 faosnf0.11b 43388 dfsucon 43484 or3or 43984 uneqsn 43986 plvcofphax 46918 ichim 47413 |
| Copyright terms: Public domain | W3C validator |