Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version |
Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | 1 | imbi2i 335 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm3.24 402 annim 403 xor 1011 nic-mpALT 1676 nic-axALT 1678 rexanali 3191 difdif 4061 dfss4 4189 difin 4192 ssdif0 4294 difin0ss 4299 inssdif0 4300 dfif2 4458 dffv2 6845 tfinds 7681 domtriord 8859 inf3lem3 9318 nominpos 12140 isprm3 16316 vdwlem13 16622 vdwnn 16627 psgnunilem4 19020 efgredlem 19268 efgred 19269 ufinffr 22988 ptcmplem5 23115 nmoleub2lem2 24185 ellogdm 25699 pntpbnd 26641 cvbr2 30546 cvnbtwn2 30550 cvnbtwn3 30551 cvnbtwn4 30552 chpssati 30626 chrelat2i 30628 chrelat3 30634 bnj1476 32727 bnj110 32738 bnj1388 32913 dff15 32956 df3nandALT1 34515 imnand2 34518 bj-andnotim 34697 lindsenlbs 35699 poimirlem11 35715 poimirlem12 35716 fdc 35830 lpssat 36954 lssat 36957 lcvbr2 36963 lcvbr3 36964 lcvnbtwn2 36968 lcvnbtwn3 36969 cvrval2 37215 cvrnbtwn2 37216 cvrnbtwn3 37217 cvrnbtwn4 37220 atlrelat1 37262 hlrelat2 37344 dihglblem6 39281 dfsucon 41028 or3or 41520 uneqsn 41522 plvcofphax 44329 ichim 44797 |
Copyright terms: Public domain | W3C validator |