| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1672 nic-axALT 1674 rexanali 3084 difdif 4098 dfss4 4232 difin 4235 ssdif0 4329 difin0ss 4336 inssdif0 4337 dfif2 4490 dffv2 6956 tfinds 7836 sdom0 9073 domtriord 9087 sdom1 9189 inf3lem3 9583 nominpos 12419 isprm3 16653 vdwlem13 16964 vdwnn 16969 psgnunilem4 19427 efgredlem 19677 efgred 19678 ufinffr 23816 ptcmplem5 23943 nmoleub2lem2 25016 ellogdm 26548 pntpbnd 27499 cvbr2 32212 cvnbtwn2 32216 cvnbtwn3 32217 cvnbtwn4 32218 chpssati 32292 chrelat2i 32294 chrelat3 32300 bnj1476 34837 bnj110 34848 bnj1388 35023 dff15 35074 df3nandALT1 36387 imnand2 36390 bj-andnotim 36576 lindsenlbs 37609 poimirlem11 37625 poimirlem12 37626 fdc 37739 lpssat 39006 lssat 39009 lcvbr2 39015 lcvbr3 39016 lcvnbtwn2 39020 lcvnbtwn3 39021 cvrval2 39267 cvrnbtwn2 39268 cvrnbtwn3 39269 cvrnbtwn4 39272 atlrelat1 39314 hlrelat2 39397 dihglblem6 41334 hashnexinj 42116 naddgeoa 43383 faosnf0.11b 43416 dfsucon 43512 or3or 44012 uneqsn 44014 plvcofphax 46948 ichim 47458 |
| Copyright terms: Public domain | W3C validator |