| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1672 nic-axALT 1674 rexanali 3083 difdif 4088 dfss4 4222 difin 4225 ssdif0 4319 difin0ss 4326 inssdif0 4327 dfif2 4480 dffv2 6922 tfinds 7800 sdom0 9033 domtriord 9047 sdom1 9149 inf3lem3 9545 nominpos 12379 isprm3 16612 vdwlem13 16923 vdwnn 16928 psgnunilem4 19394 efgredlem 19644 efgred 19645 ufinffr 23832 ptcmplem5 23959 nmoleub2lem2 25032 ellogdm 26564 pntpbnd 27515 cvbr2 32245 cvnbtwn2 32249 cvnbtwn3 32250 cvnbtwn4 32251 chpssati 32325 chrelat2i 32327 chrelat3 32333 bnj1476 34816 bnj110 34827 bnj1388 35002 dff15 35053 df3nandALT1 36375 imnand2 36378 bj-andnotim 36564 lindsenlbs 37597 poimirlem11 37613 poimirlem12 37614 fdc 37727 lpssat 38994 lssat 38997 lcvbr2 39003 lcvbr3 39004 lcvnbtwn2 39008 lcvnbtwn3 39009 cvrval2 39255 cvrnbtwn2 39256 cvrnbtwn3 39257 cvrnbtwn4 39260 atlrelat1 39302 hlrelat2 39385 dihglblem6 41322 hashnexinj 42104 naddgeoa 43370 faosnf0.11b 43403 dfsucon 43499 or3or 43999 uneqsn 44001 plvcofphax 46935 ichim 47445 |
| Copyright terms: Public domain | W3C validator |