![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version |
Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 314 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | 1 | imbi2i 335 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
3 | imnan 400 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm3.24 403 annim 404 xor 1013 nic-mpALT 1674 nic-axALT 1676 rexanali 3102 difdif 4129 dfss4 4257 difin 4260 ssdif0 4362 difin0ss 4367 inssdif0 4368 dfif2 4529 dffv2 6983 tfinds 7845 sdom0 9104 domtriord 9119 sdom1 9238 inf3lem3 9621 nominpos 12445 isprm3 16616 vdwlem13 16922 vdwnn 16927 psgnunilem4 19359 efgredlem 19609 efgred 19610 ufinffr 23424 ptcmplem5 23551 nmoleub2lem2 24623 ellogdm 26138 pntpbnd 27080 cvbr2 31523 cvnbtwn2 31527 cvnbtwn3 31528 cvnbtwn4 31529 chpssati 31603 chrelat2i 31605 chrelat3 31611 bnj1476 33846 bnj110 33857 bnj1388 34032 dff15 34075 df3nandALT1 35272 imnand2 35275 bj-andnotim 35454 lindsenlbs 36471 poimirlem11 36487 poimirlem12 36488 fdc 36601 lpssat 37871 lssat 37874 lcvbr2 37880 lcvbr3 37881 lcvnbtwn2 37885 lcvnbtwn3 37886 cvrval2 38132 cvrnbtwn2 38133 cvrnbtwn3 38134 cvrnbtwn4 38137 atlrelat1 38179 hlrelat2 38262 dihglblem6 40199 naddgeoa 42130 faosnf0.11b 42163 dfsucon 42259 or3or 42759 uneqsn 42761 plvcofphax 45643 ichim 46111 |
Copyright terms: Public domain | W3C validator |