| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1672 nic-axALT 1674 rexanali 3084 difdif 4094 dfss4 4228 difin 4231 ssdif0 4325 difin0ss 4332 inssdif0 4333 dfif2 4486 dffv2 6938 tfinds 7816 sdom0 9050 domtriord 9064 sdom1 9166 inf3lem3 9559 nominpos 12395 isprm3 16629 vdwlem13 16940 vdwnn 16945 psgnunilem4 19403 efgredlem 19653 efgred 19654 ufinffr 23792 ptcmplem5 23919 nmoleub2lem2 24992 ellogdm 26524 pntpbnd 27475 cvbr2 32185 cvnbtwn2 32189 cvnbtwn3 32190 cvnbtwn4 32191 chpssati 32265 chrelat2i 32267 chrelat3 32273 bnj1476 34810 bnj110 34821 bnj1388 34996 dff15 35047 df3nandALT1 36360 imnand2 36363 bj-andnotim 36549 lindsenlbs 37582 poimirlem11 37598 poimirlem12 37599 fdc 37712 lpssat 38979 lssat 38982 lcvbr2 38988 lcvbr3 38989 lcvnbtwn2 38993 lcvnbtwn3 38994 cvrval2 39240 cvrnbtwn2 39241 cvrnbtwn3 39242 cvrnbtwn4 39245 atlrelat1 39287 hlrelat2 39370 dihglblem6 41307 hashnexinj 42089 naddgeoa 43356 faosnf0.11b 43389 dfsucon 43485 or3or 43985 uneqsn 43987 plvcofphax 46921 ichim 47431 |
| Copyright terms: Public domain | W3C validator |