![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version |
Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm3.24 402 annim 403 xor 1015 nic-mpALT 1670 nic-axALT 1672 rexanali 3108 difdif 4158 dfss4 4288 difin 4291 ssdif0 4389 difin0ss 4396 inssdif0 4397 dfif2 4550 dffv2 7017 tfinds 7897 sdom0 9174 domtriord 9189 sdom1 9305 inf3lem3 9699 nominpos 12530 isprm3 16730 vdwlem13 17040 vdwnn 17045 psgnunilem4 19539 efgredlem 19789 efgred 19790 ufinffr 23958 ptcmplem5 24085 nmoleub2lem2 25168 ellogdm 26699 pntpbnd 27650 cvbr2 32315 cvnbtwn2 32319 cvnbtwn3 32320 cvnbtwn4 32321 chpssati 32395 chrelat2i 32397 chrelat3 32403 bnj1476 34823 bnj110 34834 bnj1388 35009 dff15 35060 df3nandALT1 36365 imnand2 36368 bj-andnotim 36554 lindsenlbs 37575 poimirlem11 37591 poimirlem12 37592 fdc 37705 lpssat 38969 lssat 38972 lcvbr2 38978 lcvbr3 38979 lcvnbtwn2 38983 lcvnbtwn3 38984 cvrval2 39230 cvrnbtwn2 39231 cvrnbtwn3 39232 cvrnbtwn4 39235 atlrelat1 39277 hlrelat2 39360 dihglblem6 41297 hashnexinj 42085 naddgeoa 43356 faosnf0.11b 43389 dfsucon 43485 or3or 43985 uneqsn 43987 plvcofphax 46862 ichim 47331 |
Copyright terms: Public domain | W3C validator |