![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version |
Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
3 | imnan 401 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm3.24 404 annim 405 xor 1014 nic-mpALT 1675 nic-axALT 1677 rexanali 3103 difdif 4131 dfss4 4259 difin 4262 ssdif0 4364 difin0ss 4369 inssdif0 4370 dfif2 4531 dffv2 6987 tfinds 7849 sdom0 9108 domtriord 9123 sdom1 9242 inf3lem3 9625 nominpos 12449 isprm3 16620 vdwlem13 16926 vdwnn 16931 psgnunilem4 19365 efgredlem 19615 efgred 19616 ufinffr 23433 ptcmplem5 23560 nmoleub2lem2 24632 ellogdm 26147 pntpbnd 27091 cvbr2 31536 cvnbtwn2 31540 cvnbtwn3 31541 cvnbtwn4 31542 chpssati 31616 chrelat2i 31618 chrelat3 31624 bnj1476 33858 bnj110 33869 bnj1388 34044 dff15 34087 df3nandALT1 35284 imnand2 35287 bj-andnotim 35466 lindsenlbs 36483 poimirlem11 36499 poimirlem12 36500 fdc 36613 lpssat 37883 lssat 37886 lcvbr2 37892 lcvbr3 37893 lcvnbtwn2 37897 lcvnbtwn3 37898 cvrval2 38144 cvrnbtwn2 38145 cvrnbtwn3 38146 cvrnbtwn4 38149 atlrelat1 38191 hlrelat2 38274 dihglblem6 40211 naddgeoa 42145 faosnf0.11b 42178 dfsucon 42274 or3or 42774 uneqsn 42776 plvcofphax 45657 ichim 46125 |
Copyright terms: Public domain | W3C validator |