| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1671 nic-axALT 1673 rexanali 3090 difdif 4115 dfss4 4249 difin 4252 ssdif0 4346 difin0ss 4353 inssdif0 4354 dfif2 4507 dffv2 6984 tfinds 7863 sdom0 9130 domtriord 9145 sdom1 9260 inf3lem3 9652 nominpos 12486 isprm3 16702 vdwlem13 17013 vdwnn 17018 psgnunilem4 19483 efgredlem 19733 efgred 19734 ufinffr 23883 ptcmplem5 24010 nmoleub2lem2 25085 ellogdm 26617 pntpbnd 27568 cvbr2 32230 cvnbtwn2 32234 cvnbtwn3 32235 cvnbtwn4 32236 chpssati 32310 chrelat2i 32312 chrelat3 32318 bnj1476 34820 bnj110 34831 bnj1388 35006 dff15 35057 df3nandALT1 36359 imnand2 36362 bj-andnotim 36548 lindsenlbs 37581 poimirlem11 37597 poimirlem12 37598 fdc 37711 lpssat 38973 lssat 38976 lcvbr2 38982 lcvbr3 38983 lcvnbtwn2 38987 lcvnbtwn3 38988 cvrval2 39234 cvrnbtwn2 39235 cvrnbtwn3 39236 cvrnbtwn4 39239 atlrelat1 39281 hlrelat2 39364 dihglblem6 41301 hashnexinj 42088 naddgeoa 43369 faosnf0.11b 43402 dfsucon 43498 or3or 43998 uneqsn 44000 plvcofphax 46917 ichim 47402 |
| Copyright terms: Public domain | W3C validator |