![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version |
Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1670 nic-axALT 1672 rexanali 3101 difdif 4146 dfss4 4276 difin 4279 ssdif0 4373 difin0ss 4380 inssdif0 4381 dfif2 4534 dffv2 7008 tfinds 7885 sdom0 9153 domtriord 9168 sdom1 9282 inf3lem3 9674 nominpos 12507 isprm3 16723 vdwlem13 17033 vdwnn 17038 psgnunilem4 19536 efgredlem 19786 efgred 19787 ufinffr 23959 ptcmplem5 24086 nmoleub2lem2 25171 ellogdm 26704 pntpbnd 27655 cvbr2 32325 cvnbtwn2 32329 cvnbtwn3 32330 cvnbtwn4 32331 chpssati 32405 chrelat2i 32407 chrelat3 32413 bnj1476 34853 bnj110 34864 bnj1388 35039 dff15 35090 df3nandALT1 36394 imnand2 36397 bj-andnotim 36583 lindsenlbs 37614 poimirlem11 37630 poimirlem12 37631 fdc 37744 lpssat 39007 lssat 39010 lcvbr2 39016 lcvbr3 39017 lcvnbtwn2 39021 lcvnbtwn3 39022 cvrval2 39268 cvrnbtwn2 39269 cvrnbtwn3 39270 cvrnbtwn4 39273 atlrelat1 39315 hlrelat2 39398 dihglblem6 41335 hashnexinj 42122 naddgeoa 43398 faosnf0.11b 43431 dfsucon 43527 or3or 44027 uneqsn 44029 plvcofphax 46908 ichim 47393 |
Copyright terms: Public domain | W3C validator |