| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1673 nic-axALT 1675 rexanali 3086 difdif 4080 dfss4 4214 difin 4217 ssdif0 4311 difin0ss 4318 inssdif0 4319 dfif2 4472 dffv2 6912 tfinds 7785 sdom0 9017 domtriord 9031 sdom1 9129 inf3lem3 9515 nominpos 12353 isprm3 16589 vdwlem13 16900 vdwnn 16905 psgnunilem4 19404 efgredlem 19654 efgred 19655 ufinffr 23839 ptcmplem5 23966 nmoleub2lem2 25038 ellogdm 26570 pntpbnd 27521 cvbr2 32255 cvnbtwn2 32259 cvnbtwn3 32260 cvnbtwn4 32261 chpssati 32335 chrelat2i 32337 chrelat3 32343 bnj1476 34851 bnj110 34862 bnj1388 35037 dff15 35088 df3nandALT1 36433 imnand2 36436 bj-andnotim 36622 lindsenlbs 37655 poimirlem11 37671 poimirlem12 37672 fdc 37785 lpssat 39052 lssat 39055 lcvbr2 39061 lcvbr3 39062 lcvnbtwn2 39066 lcvnbtwn3 39067 cvrval2 39313 cvrnbtwn2 39314 cvrnbtwn3 39315 cvrnbtwn4 39318 atlrelat1 39360 hlrelat2 39442 dihglblem6 41379 hashnexinj 42161 naddgeoa 43427 faosnf0.11b 43460 dfsucon 43556 or3or 44056 uneqsn 44058 plvcofphax 46978 ichim 47488 |
| Copyright terms: Public domain | W3C validator |