| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1673 nic-axALT 1675 rexanali 3087 difdif 4084 dfss4 4218 difin 4221 ssdif0 4315 difin0ss 4322 inssdif0 4323 dfif2 4478 dffv2 6926 tfinds 7799 sdom0 9033 domtriord 9047 sdom1 9145 inf3lem3 9531 nominpos 12369 isprm3 16601 vdwlem13 16912 vdwnn 16917 psgnunilem4 19417 efgredlem 19667 efgred 19668 ufinffr 23864 ptcmplem5 23991 nmoleub2lem2 25063 ellogdm 26595 pntpbnd 27546 cvbr2 32284 cvnbtwn2 32288 cvnbtwn3 32289 cvnbtwn4 32290 chpssati 32364 chrelat2i 32366 chrelat3 32372 bnj1476 34931 bnj110 34942 bnj1388 35117 dff15 35168 df3nandALT1 36515 imnand2 36518 bj-andnotim 36704 lindsenlbs 37728 poimirlem11 37744 poimirlem12 37745 fdc 37858 lpssat 39185 lssat 39188 lcvbr2 39194 lcvbr3 39195 lcvnbtwn2 39199 lcvnbtwn3 39200 cvrval2 39446 cvrnbtwn2 39447 cvrnbtwn3 39448 cvrnbtwn4 39451 atlrelat1 39493 hlrelat2 39575 dihglblem6 41512 hashnexinj 42294 naddgeoa 43551 faosnf0.11b 43584 dfsucon 43680 or3or 44180 uneqsn 44182 plvcofphax 47109 ichim 47619 |
| Copyright terms: Public domain | W3C validator |