| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version | ||
| Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
| Ref | Expression |
|---|---|
| iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
| 3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.24 402 annim 403 xor 1016 nic-mpALT 1671 nic-axALT 1673 rexanali 3090 difdif 4117 dfss4 4251 difin 4254 ssdif0 4348 difin0ss 4355 inssdif0 4356 dfif2 4509 dffv2 6985 tfinds 7864 sdom0 9131 domtriord 9146 sdom1 9261 inf3lem3 9653 nominpos 12487 isprm3 16703 vdwlem13 17014 vdwnn 17019 psgnunilem4 19488 efgredlem 19738 efgred 19739 ufinffr 23902 ptcmplem5 24029 nmoleub2lem2 25104 ellogdm 26636 pntpbnd 27587 cvbr2 32249 cvnbtwn2 32253 cvnbtwn3 32254 cvnbtwn4 32255 chpssati 32329 chrelat2i 32331 chrelat3 32337 bnj1476 34802 bnj110 34813 bnj1388 34988 dff15 35039 df3nandALT1 36341 imnand2 36344 bj-andnotim 36530 lindsenlbs 37563 poimirlem11 37579 poimirlem12 37580 fdc 37693 lpssat 38955 lssat 38958 lcvbr2 38964 lcvbr3 38965 lcvnbtwn2 38969 lcvnbtwn3 38970 cvrval2 39216 cvrnbtwn2 39217 cvrnbtwn3 39218 cvrnbtwn4 39221 atlrelat1 39263 hlrelat2 39346 dihglblem6 41283 hashnexinj 42070 naddgeoa 43352 faosnf0.11b 43385 dfsucon 43481 or3or 43981 uneqsn 43983 plvcofphax 46905 ichim 47390 |
| Copyright terms: Public domain | W3C validator |