![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iman | Structured version Visualization version GIF version |
Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
Ref | Expression |
---|---|
iman | ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → ¬ ¬ 𝜓)) |
3 | imnan 399 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm3.24 402 annim 403 xor 1013 nic-mpALT 1667 nic-axALT 1669 rexanali 3099 difdif 4129 dfss4 4259 difin 4262 ssdif0 4364 difin0ss 4369 inssdif0 4370 dfif2 4531 dffv2 6993 tfinds 7864 sdom0 9133 domtriord 9148 sdom1 9267 inf3lem3 9654 nominpos 12480 isprm3 16654 vdwlem13 16962 vdwnn 16967 psgnunilem4 19452 efgredlem 19702 efgred 19703 ufinffr 23846 ptcmplem5 23973 nmoleub2lem2 25056 ellogdm 26586 pntpbnd 27534 cvbr2 32106 cvnbtwn2 32110 cvnbtwn3 32111 cvnbtwn4 32112 chpssati 32186 chrelat2i 32188 chrelat3 32194 bnj1476 34478 bnj110 34489 bnj1388 34664 dff15 34707 df3nandALT1 35883 imnand2 35886 bj-andnotim 36065 lindsenlbs 37088 poimirlem11 37104 poimirlem12 37105 fdc 37218 lpssat 38485 lssat 38488 lcvbr2 38494 lcvbr3 38495 lcvnbtwn2 38499 lcvnbtwn3 38500 cvrval2 38746 cvrnbtwn2 38747 cvrnbtwn3 38748 cvrnbtwn4 38751 atlrelat1 38793 hlrelat2 38876 dihglblem6 40813 hashnexinj 41599 naddgeoa 42824 faosnf0.11b 42857 dfsucon 42953 or3or 43453 uneqsn 43455 plvcofphax 46329 ichim 46797 |
Copyright terms: Public domain | W3C validator |