Step | Hyp | Ref
| Expression |
1 | | 0nn0 12483 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
2 | | nn0ge0 12493 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 0 ≤ 𝑘) |
3 | 2 | rgen 3063 |
. . . . . . . 8
⊢
∀𝑘 ∈
ℕ0 0 ≤ 𝑘 |
4 | | fveq2 6888 |
. . . . . . . . . . . 12
⊢ (𝑗 = 0 →
(ℤ≥‘𝑗) =
(ℤ≥‘0)) |
5 | | nn0uz 12860 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
6 | 4, 5 | eqtr4di 2790 |
. . . . . . . . . . 11
⊢ (𝑗 = 0 →
(ℤ≥‘𝑗) = ℕ0) |
7 | 6 | raleqdv 3325 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗 ≤ 𝑘))) |
8 | 2 | ad2antlr 725 |
. . . . . . . . . . . 12
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ (𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) → 0 ≤ 𝑘) |
9 | | simpll 765 |
. . . . . . . . . . . . 13
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → 𝑗 = 0) |
10 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → 0 ≤ 𝑘) |
11 | 9, 10 | eqbrtrd 5169 |
. . . . . . . . . . . . 13
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → 𝑗 ≤ 𝑘) |
12 | 9, 11 | jca 512 |
. . . . . . . . . . . 12
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → (𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
13 | 8, 12 | impbida 799 |
. . . . . . . . . . 11
⊢ ((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) → ((𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ 0 ≤ 𝑘)) |
14 | 13 | ralbidva 3175 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (∀𝑘 ∈ ℕ0
(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘)) |
15 | 7, 14 | bitrd 278 |
. . . . . . . . 9
⊢ (𝑗 = 0 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘)) |
16 | 15 | rspcev 3612 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘) → ∃𝑗 ∈ ℕ0
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
17 | 1, 3, 16 | mp2an 690 |
. . . . . . 7
⊢
∃𝑗 ∈
ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) |
18 | | rexanuz2nf.1 |
. . . . . . . . 9
⊢ 𝑍 =
ℕ0 |
19 | | nfcv 2903 |
. . . . . . . . 9
⊢
Ⅎ𝑗ℕ0 |
20 | 18, 19 | nfcxfr 2901 |
. . . . . . . 8
⊢
Ⅎ𝑗𝑍 |
21 | 20, 19, 18 | rexeqif 43846 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
22 | 17, 21 | mpbir 230 |
. . . . . 6
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) |
23 | | rexanuz2nf.2 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
24 | 23 | ralbii 3093 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
25 | 24 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
26 | 22, 25 | mpbir 230 |
. . . . 5
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 |
27 | | 1nn0 12484 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
28 | | nngt0 12239 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
29 | 28 | rgen 3063 |
. . . . . . . 8
⊢
∀𝑘 ∈
ℕ 0 < 𝑘 |
30 | | fveq2 6888 |
. . . . . . . . . . 11
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) =
(ℤ≥‘1)) |
31 | | nnuz 12861 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
32 | 30, 31 | eqtr4di 2790 |
. . . . . . . . . 10
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) = ℕ) |
33 | 32 | raleqdv 3325 |
. . . . . . . . 9
⊢ (𝑗 = 1 → (∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘 ↔ ∀𝑘 ∈ ℕ 0 < 𝑘)) |
34 | 33 | rspcev 3612 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ ∀𝑘 ∈ ℕ 0 < 𝑘) → ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘) |
35 | 27, 29, 34 | mp2an 690 |
. . . . . . 7
⊢
∃𝑗 ∈
ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)0 < 𝑘 |
36 | 20, 19, 18 | rexeqif 43846 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘 ↔ ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘) |
37 | 35, 36 | mpbir 230 |
. . . . . 6
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘 |
38 | | rexanuz2nf.3 |
. . . . . . . 8
⊢ (𝜓 ↔ 0 < 𝑘) |
39 | 38 | ralbii 3093 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)𝜓 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)0 < 𝑘) |
40 | 39 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)0 < 𝑘) |
41 | 37, 40 | mpbir 230 |
. . . . 5
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓 |
42 | 26, 41 | pm3.2i 471 |
. . . 4
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
43 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘 ¬
((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗) |
44 | | nfcv 2903 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑗 |
45 | | nfcv 2903 |
. . . . . . . . 9
⊢
Ⅎ𝑘(ℤ≥‘𝑗) |
46 | 5 | uzid3 44131 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
(ℤ≥‘𝑗)) |
47 | 46 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ 𝑗 = 0) → 𝑗 ∈
(ℤ≥‘𝑗)) |
48 | | 0re 11212 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
49 | 48 | ltnri 11319 |
. . . . . . . . . . . . 13
⊢ ¬ 0
< 0 |
50 | 49 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 = 0 → ¬ 0 <
0) |
51 | | eqcom 2739 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 0 ↔ 0 = 𝑗) |
52 | 51 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝑗 = 0 → 0 = 𝑗) |
53 | 50, 52 | brneqtrd 43750 |
. . . . . . . . . . 11
⊢ (𝑗 = 0 → ¬ 0 < 𝑗) |
54 | 53 | intnand 489 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
55 | 54 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ 𝑗 = 0) → ¬
((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
56 | | breq2 5151 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑗)) |
57 | 56 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ (𝑗 = 0 ∧ 𝑗 ≤ 𝑗))) |
58 | 23, 57 | bitrid 282 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝜑 ↔ (𝑗 = 0 ∧ 𝑗 ≤ 𝑗))) |
59 | | breq2 5151 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (0 < 𝑘 ↔ 0 < 𝑗)) |
60 | 38, 59 | bitrid 282 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝜓 ↔ 0 < 𝑗)) |
61 | 58, 60 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝜓) ↔ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗))) |
62 | 61 | notbid 317 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (¬ (𝜑 ∧ 𝜓) ↔ ¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗))) |
63 | 43, 44, 45, 47, 55, 62 | rspced 43847 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℕ0
∧ 𝑗 = 0) →
∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓)) |
64 | 46 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ ¬ 𝑗 = 0) →
𝑗 ∈
(ℤ≥‘𝑗)) |
65 | | id 22 |
. . . . . . . . . . . 12
⊢ (¬
𝑗 = 0 → ¬ 𝑗 = 0) |
66 | 65 | intnanrd 490 |
. . . . . . . . . . 11
⊢ (¬
𝑗 = 0 → ¬ (𝑗 = 0 ∧ 𝑗 ≤ 𝑗)) |
67 | 66 | intnanrd 490 |
. . . . . . . . . 10
⊢ (¬
𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
68 | 67 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ ¬ 𝑗 = 0) →
¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
69 | 43, 44, 45, 64, 68, 62 | rspced 43847 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℕ0
∧ ¬ 𝑗 = 0) →
∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓)) |
70 | 63, 69 | pm2.61dan 811 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ0
→ ∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓)) |
71 | | rexnal 3100 |
. . . . . . 7
⊢
(∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
72 | 70, 71 | sylib 217 |
. . . . . 6
⊢ (𝑗 ∈ ℕ0
→ ¬ ∀𝑘
∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
73 | 72 | nrex 3074 |
. . . . 5
⊢ ¬
∃𝑗 ∈
ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) |
74 | 20, 19, 18 | rexeqif 43846 |
. . . . 5
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
75 | 73, 74 | mtbir 322 |
. . . 4
⊢ ¬
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) |
76 | 42, 75 | pm3.2i 471 |
. . 3
⊢
((∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) ∧ ¬ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
77 | | annim 404 |
. . 3
⊢
(((∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) ∧ ¬ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) ↔ ¬ ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
78 | 76, 77 | mpbi 229 |
. 2
⊢ ¬
((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
79 | 78 | nimnbi2 43844 |
1
⊢ ¬
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |