Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz2nf Structured version   Visualization version   GIF version

Theorem rexanuz2nf 45488
Description: A simple counterexample related to theorem rexanuz2 15316, demonstrating the necessity of its disjoint variable constraints. Here, 𝑗 appears free in 𝜑, showing that without these constraints, rexanuz2 15316 and similar theorems would not hold (see rexanre 15313 and rexanuz 15312). (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
rexanuz2nf.1 𝑍 = ℕ0
rexanuz2nf.2 (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑘))
rexanuz2nf.3 (𝜓 ↔ 0 < 𝑘)
Assertion
Ref Expression
rexanuz2nf ¬ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem rexanuz2nf
StepHypRef Expression
1 0nn0 12457 . . . . . . . 8 0 ∈ ℕ0
2 nn0ge0 12467 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
32rgen 3046 . . . . . . . 8 𝑘 ∈ ℕ0 0 ≤ 𝑘
4 fveq2 6858 . . . . . . . . . . . 12 (𝑗 = 0 → (ℤ𝑗) = (ℤ‘0))
5 nn0uz 12835 . . . . . . . . . . . 12 0 = (ℤ‘0)
64, 5eqtr4di 2782 . . . . . . . . . . 11 (𝑗 = 0 → (ℤ𝑗) = ℕ0)
76raleqdv 3299 . . . . . . . . . 10 (𝑗 = 0 → (∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗𝑘)))
82ad2antlr 727 . . . . . . . . . . . 12 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ (𝑗 = 0 ∧ 𝑗𝑘)) → 0 ≤ 𝑘)
9 simpll 766 . . . . . . . . . . . . 13 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 𝑗 = 0)
10 simpr 484 . . . . . . . . . . . . . 14 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘)
119, 10eqbrtrd 5129 . . . . . . . . . . . . 13 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 𝑗𝑘)
129, 11jca 511 . . . . . . . . . . . 12 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → (𝑗 = 0 ∧ 𝑗𝑘))
138, 12impbida 800 . . . . . . . . . . 11 ((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) → ((𝑗 = 0 ∧ 𝑗𝑘) ↔ 0 ≤ 𝑘))
1413ralbidva 3154 . . . . . . . . . 10 (𝑗 = 0 → (∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘))
157, 14bitrd 279 . . . . . . . . 9 (𝑗 = 0 → (∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘))
1615rspcev 3588 . . . . . . . 8 ((0 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
171, 3, 16mp2an 692 . . . . . . 7 𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘)
18 rexanuz2nf.1 . . . . . . . . 9 𝑍 = ℕ0
19 nfcv 2891 . . . . . . . . 9 𝑗0
2018, 19nfcxfr 2889 . . . . . . . 8 𝑗𝑍
2120, 19, 18rexeqif 45160 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2217, 21mpbir 231 . . . . . 6 𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘)
23 rexanuz2nf.2 . . . . . . . 8 (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑘))
2423ralbii 3075 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2524rexbii 3076 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2622, 25mpbir 231 . . . . 5 𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑
27 1nn0 12458 . . . . . . . 8 1 ∈ ℕ0
28 nngt0 12217 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
2928rgen 3046 . . . . . . . 8 𝑘 ∈ ℕ 0 < 𝑘
30 fveq2 6858 . . . . . . . . . . 11 (𝑗 = 1 → (ℤ𝑗) = (ℤ‘1))
31 nnuz 12836 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3230, 31eqtr4di 2782 . . . . . . . . . 10 (𝑗 = 1 → (ℤ𝑗) = ℕ)
3332raleqdv 3299 . . . . . . . . 9 (𝑗 = 1 → (∀𝑘 ∈ (ℤ𝑗)0 < 𝑘 ↔ ∀𝑘 ∈ ℕ 0 < 𝑘))
3433rspcev 3588 . . . . . . . 8 ((1 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ 0 < 𝑘) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘)
3527, 29, 34mp2an 692 . . . . . . 7 𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘
3620, 19, 18rexeqif 45160 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘 ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘)
3735, 36mpbir 231 . . . . . 6 𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘
38 rexanuz2nf.3 . . . . . . . 8 (𝜓 ↔ 0 < 𝑘)
3938ralbii 3075 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∀𝑘 ∈ (ℤ𝑗)0 < 𝑘)
4039rexbii 3076 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘)
4137, 40mpbir 231 . . . . 5 𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓
4226, 41pm3.2i 470 . . . 4 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
43 nfv 1914 . . . . . . . . 9 𝑘 ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)
44 nfcv 2891 . . . . . . . . 9 𝑘𝑗
45 nfcv 2891 . . . . . . . . 9 𝑘(ℤ𝑗)
465uzid3 45431 . . . . . . . . . 10 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ𝑗))
4746adantr 480 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑗 = 0) → 𝑗 ∈ (ℤ𝑗))
48 0re 11176 . . . . . . . . . . . . . 14 0 ∈ ℝ
4948ltnri 11283 . . . . . . . . . . . . 13 ¬ 0 < 0
5049a1i 11 . . . . . . . . . . . 12 (𝑗 = 0 → ¬ 0 < 0)
51 eqcom 2736 . . . . . . . . . . . . 13 (𝑗 = 0 ↔ 0 = 𝑗)
5251biimpi 216 . . . . . . . . . . . 12 (𝑗 = 0 → 0 = 𝑗)
5350, 52brneqtrd 45070 . . . . . . . . . . 11 (𝑗 = 0 → ¬ 0 < 𝑗)
5453intnand 488 . . . . . . . . . 10 (𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
5554adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑗 = 0) → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
56 breq2 5111 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑗𝑘𝑗𝑗))
5756anbi2d 630 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑗 = 0 ∧ 𝑗𝑘) ↔ (𝑗 = 0 ∧ 𝑗𝑗)))
5823, 57bitrid 283 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑗)))
59 breq2 5111 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (0 < 𝑘 ↔ 0 < 𝑗))
6038, 59bitrid 283 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝜓 ↔ 0 < 𝑗))
6158, 60anbi12d 632 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝜓) ↔ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)))
6261notbid 318 . . . . . . . . 9 (𝑘 = 𝑗 → (¬ (𝜑𝜓) ↔ ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)))
6343, 44, 45, 47, 55, 62rspced 45161 . . . . . . . 8 ((𝑗 ∈ ℕ0𝑗 = 0) → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
6446adantr 480 . . . . . . . . 9 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → 𝑗 ∈ (ℤ𝑗))
65 id 22 . . . . . . . . . . . 12 𝑗 = 0 → ¬ 𝑗 = 0)
6665intnanrd 489 . . . . . . . . . . 11 𝑗 = 0 → ¬ (𝑗 = 0 ∧ 𝑗𝑗))
6766intnanrd 489 . . . . . . . . . 10 𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
6867adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
6943, 44, 45, 64, 68, 62rspced 45161 . . . . . . . 8 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
7063, 69pm2.61dan 812 . . . . . . 7 (𝑗 ∈ ℕ0 → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
71 rexnal 3082 . . . . . . 7 (∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓) ↔ ¬ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7270, 71sylib 218 . . . . . 6 (𝑗 ∈ ℕ0 → ¬ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7372nrex 3057 . . . . 5 ¬ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝜑𝜓)
7420, 19, 18rexeqif 45160 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7573, 74mtbir 323 . . . 4 ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)
7642, 75pm3.2i 470 . . 3 ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ∧ ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
77 annim 403 . . 3 (((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ∧ ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)) ↔ ¬ ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
7876, 77mpbi 230 . 2 ¬ ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7978nimnbi2 45158 1 ¬ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cn 12186  0cn0 12442  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator