Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz2nf Structured version   Visualization version   GIF version

Theorem rexanuz2nf 45461
Description: A simple counterexample related to theorem rexanuz2 15292, demonstrating the necessity of its disjoint variable constraints. Here, 𝑗 appears free in 𝜑, showing that without these constraints, rexanuz2 15292 and similar theorems would not hold (see rexanre 15289 and rexanuz 15288). (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
rexanuz2nf.1 𝑍 = ℕ0
rexanuz2nf.2 (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑘))
rexanuz2nf.3 (𝜓 ↔ 0 < 𝑘)
Assertion
Ref Expression
rexanuz2nf ¬ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem rexanuz2nf
StepHypRef Expression
1 0nn0 12433 . . . . . . . 8 0 ∈ ℕ0
2 nn0ge0 12443 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
32rgen 3046 . . . . . . . 8 𝑘 ∈ ℕ0 0 ≤ 𝑘
4 fveq2 6840 . . . . . . . . . . . 12 (𝑗 = 0 → (ℤ𝑗) = (ℤ‘0))
5 nn0uz 12811 . . . . . . . . . . . 12 0 = (ℤ‘0)
64, 5eqtr4di 2782 . . . . . . . . . . 11 (𝑗 = 0 → (ℤ𝑗) = ℕ0)
76raleqdv 3296 . . . . . . . . . 10 (𝑗 = 0 → (∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗𝑘)))
82ad2antlr 727 . . . . . . . . . . . 12 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ (𝑗 = 0 ∧ 𝑗𝑘)) → 0 ≤ 𝑘)
9 simpll 766 . . . . . . . . . . . . 13 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 𝑗 = 0)
10 simpr 484 . . . . . . . . . . . . . 14 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘)
119, 10eqbrtrd 5124 . . . . . . . . . . . . 13 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 𝑗𝑘)
129, 11jca 511 . . . . . . . . . . . 12 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → (𝑗 = 0 ∧ 𝑗𝑘))
138, 12impbida 800 . . . . . . . . . . 11 ((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) → ((𝑗 = 0 ∧ 𝑗𝑘) ↔ 0 ≤ 𝑘))
1413ralbidva 3154 . . . . . . . . . 10 (𝑗 = 0 → (∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘))
157, 14bitrd 279 . . . . . . . . 9 (𝑗 = 0 → (∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘))
1615rspcev 3585 . . . . . . . 8 ((0 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
171, 3, 16mp2an 692 . . . . . . 7 𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘)
18 rexanuz2nf.1 . . . . . . . . 9 𝑍 = ℕ0
19 nfcv 2891 . . . . . . . . 9 𝑗0
2018, 19nfcxfr 2889 . . . . . . . 8 𝑗𝑍
2120, 19, 18rexeqif 45133 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2217, 21mpbir 231 . . . . . 6 𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘)
23 rexanuz2nf.2 . . . . . . . 8 (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑘))
2423ralbii 3075 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2524rexbii 3076 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2622, 25mpbir 231 . . . . 5 𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑
27 1nn0 12434 . . . . . . . 8 1 ∈ ℕ0
28 nngt0 12193 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
2928rgen 3046 . . . . . . . 8 𝑘 ∈ ℕ 0 < 𝑘
30 fveq2 6840 . . . . . . . . . . 11 (𝑗 = 1 → (ℤ𝑗) = (ℤ‘1))
31 nnuz 12812 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3230, 31eqtr4di 2782 . . . . . . . . . 10 (𝑗 = 1 → (ℤ𝑗) = ℕ)
3332raleqdv 3296 . . . . . . . . 9 (𝑗 = 1 → (∀𝑘 ∈ (ℤ𝑗)0 < 𝑘 ↔ ∀𝑘 ∈ ℕ 0 < 𝑘))
3433rspcev 3585 . . . . . . . 8 ((1 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ 0 < 𝑘) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘)
3527, 29, 34mp2an 692 . . . . . . 7 𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘
3620, 19, 18rexeqif 45133 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘 ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘)
3735, 36mpbir 231 . . . . . 6 𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘
38 rexanuz2nf.3 . . . . . . . 8 (𝜓 ↔ 0 < 𝑘)
3938ralbii 3075 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∀𝑘 ∈ (ℤ𝑗)0 < 𝑘)
4039rexbii 3076 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘)
4137, 40mpbir 231 . . . . 5 𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓
4226, 41pm3.2i 470 . . . 4 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
43 nfv 1914 . . . . . . . . 9 𝑘 ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)
44 nfcv 2891 . . . . . . . . 9 𝑘𝑗
45 nfcv 2891 . . . . . . . . 9 𝑘(ℤ𝑗)
465uzid3 45404 . . . . . . . . . 10 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ𝑗))
4746adantr 480 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑗 = 0) → 𝑗 ∈ (ℤ𝑗))
48 0re 11152 . . . . . . . . . . . . . 14 0 ∈ ℝ
4948ltnri 11259 . . . . . . . . . . . . 13 ¬ 0 < 0
5049a1i 11 . . . . . . . . . . . 12 (𝑗 = 0 → ¬ 0 < 0)
51 eqcom 2736 . . . . . . . . . . . . 13 (𝑗 = 0 ↔ 0 = 𝑗)
5251biimpi 216 . . . . . . . . . . . 12 (𝑗 = 0 → 0 = 𝑗)
5350, 52brneqtrd 45043 . . . . . . . . . . 11 (𝑗 = 0 → ¬ 0 < 𝑗)
5453intnand 488 . . . . . . . . . 10 (𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
5554adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑗 = 0) → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
56 breq2 5106 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑗𝑘𝑗𝑗))
5756anbi2d 630 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑗 = 0 ∧ 𝑗𝑘) ↔ (𝑗 = 0 ∧ 𝑗𝑗)))
5823, 57bitrid 283 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑗)))
59 breq2 5106 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (0 < 𝑘 ↔ 0 < 𝑗))
6038, 59bitrid 283 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝜓 ↔ 0 < 𝑗))
6158, 60anbi12d 632 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝜓) ↔ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)))
6261notbid 318 . . . . . . . . 9 (𝑘 = 𝑗 → (¬ (𝜑𝜓) ↔ ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)))
6343, 44, 45, 47, 55, 62rspced 45134 . . . . . . . 8 ((𝑗 ∈ ℕ0𝑗 = 0) → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
6446adantr 480 . . . . . . . . 9 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → 𝑗 ∈ (ℤ𝑗))
65 id 22 . . . . . . . . . . . 12 𝑗 = 0 → ¬ 𝑗 = 0)
6665intnanrd 489 . . . . . . . . . . 11 𝑗 = 0 → ¬ (𝑗 = 0 ∧ 𝑗𝑗))
6766intnanrd 489 . . . . . . . . . 10 𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
6867adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
6943, 44, 45, 64, 68, 62rspced 45134 . . . . . . . 8 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
7063, 69pm2.61dan 812 . . . . . . 7 (𝑗 ∈ ℕ0 → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
71 rexnal 3082 . . . . . . 7 (∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓) ↔ ¬ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7270, 71sylib 218 . . . . . 6 (𝑗 ∈ ℕ0 → ¬ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7372nrex 3057 . . . . 5 ¬ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝜑𝜓)
7420, 19, 18rexeqif 45133 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7573, 74mtbir 323 . . . 4 ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)
7642, 75pm3.2i 470 . . 3 ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ∧ ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
77 annim 403 . . 3 (((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ∧ ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)) ↔ ¬ ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
7876, 77mpbi 230 . 2 ¬ ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7978nimnbi2 45131 1 ¬ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cn 12162  0cn0 12418  cuz 12769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator