Proof of Theorem rexanuz2nf
| Step | Hyp | Ref
| Expression |
| 1 | | 0nn0 12521 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
| 2 | | nn0ge0 12531 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 0 ≤ 𝑘) |
| 3 | 2 | rgen 3054 |
. . . . . . . 8
⊢
∀𝑘 ∈
ℕ0 0 ≤ 𝑘 |
| 4 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑗 = 0 →
(ℤ≥‘𝑗) =
(ℤ≥‘0)) |
| 5 | | nn0uz 12899 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 6 | 4, 5 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑗 = 0 →
(ℤ≥‘𝑗) = ℕ0) |
| 7 | 6 | raleqdv 3309 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗 ≤ 𝑘))) |
| 8 | 2 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ (𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) → 0 ≤ 𝑘) |
| 9 | | simpll 766 |
. . . . . . . . . . . . 13
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → 𝑗 = 0) |
| 10 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → 0 ≤ 𝑘) |
| 11 | 9, 10 | eqbrtrd 5146 |
. . . . . . . . . . . . 13
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → 𝑗 ≤ 𝑘) |
| 12 | 9, 11 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤
𝑘) → (𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
| 13 | 8, 12 | impbida 800 |
. . . . . . . . . . 11
⊢ ((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) → ((𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ 0 ≤ 𝑘)) |
| 14 | 13 | ralbidva 3162 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (∀𝑘 ∈ ℕ0
(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘)) |
| 15 | 7, 14 | bitrd 279 |
. . . . . . . . 9
⊢ (𝑗 = 0 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘)) |
| 16 | 15 | rspcev 3606 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘) → ∃𝑗 ∈ ℕ0
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
| 17 | 1, 3, 16 | mp2an 692 |
. . . . . . 7
⊢
∃𝑗 ∈
ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) |
| 18 | | rexanuz2nf.1 |
. . . . . . . . 9
⊢ 𝑍 =
ℕ0 |
| 19 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑗ℕ0 |
| 20 | 18, 19 | nfcxfr 2897 |
. . . . . . . 8
⊢
Ⅎ𝑗𝑍 |
| 21 | 20, 19, 18 | rexeqif 45157 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
| 22 | 17, 21 | mpbir 231 |
. . . . . 6
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘) |
| 23 | | rexanuz2nf.2 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
| 24 | 23 | ralbii 3083 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
| 25 | 24 | rexbii 3084 |
. . . . . 6
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑗 = 0 ∧ 𝑗 ≤ 𝑘)) |
| 26 | 22, 25 | mpbir 231 |
. . . . 5
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 |
| 27 | | 1nn0 12522 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 28 | | nngt0 12276 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
| 29 | 28 | rgen 3054 |
. . . . . . . 8
⊢
∀𝑘 ∈
ℕ 0 < 𝑘 |
| 30 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) =
(ℤ≥‘1)) |
| 31 | | nnuz 12900 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 32 | 30, 31 | eqtr4di 2789 |
. . . . . . . . . 10
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) = ℕ) |
| 33 | 32 | raleqdv 3309 |
. . . . . . . . 9
⊢ (𝑗 = 1 → (∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘 ↔ ∀𝑘 ∈ ℕ 0 < 𝑘)) |
| 34 | 33 | rspcev 3606 |
. . . . . . . 8
⊢ ((1
∈ ℕ0 ∧ ∀𝑘 ∈ ℕ 0 < 𝑘) → ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘) |
| 35 | 27, 29, 34 | mp2an 692 |
. . . . . . 7
⊢
∃𝑗 ∈
ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)0 < 𝑘 |
| 36 | 20, 19, 18 | rexeqif 45157 |
. . . . . . 7
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘 ↔ ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘) |
| 37 | 35, 36 | mpbir 231 |
. . . . . 6
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)0 < 𝑘 |
| 38 | | rexanuz2nf.3 |
. . . . . . . 8
⊢ (𝜓 ↔ 0 < 𝑘) |
| 39 | 38 | ralbii 3083 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)𝜓 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)0 < 𝑘) |
| 40 | 39 | rexbii 3084 |
. . . . . 6
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)0 < 𝑘) |
| 41 | 37, 40 | mpbir 231 |
. . . . 5
⊢
∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜓 |
| 42 | 26, 41 | pm3.2i 470 |
. . . 4
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
| 43 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑘 ¬
((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗) |
| 44 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑗 |
| 45 | | nfcv 2899 |
. . . . . . . . 9
⊢
Ⅎ𝑘(ℤ≥‘𝑗) |
| 46 | 5 | uzid3 45429 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ0
→ 𝑗 ∈
(ℤ≥‘𝑗)) |
| 47 | 46 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ 𝑗 = 0) → 𝑗 ∈
(ℤ≥‘𝑗)) |
| 48 | | 0re 11242 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
| 49 | 48 | ltnri 11349 |
. . . . . . . . . . . . 13
⊢ ¬ 0
< 0 |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 = 0 → ¬ 0 <
0) |
| 51 | | eqcom 2743 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 0 ↔ 0 = 𝑗) |
| 52 | 51 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝑗 = 0 → 0 = 𝑗) |
| 53 | 50, 52 | brneqtrd 45067 |
. . . . . . . . . . 11
⊢ (𝑗 = 0 → ¬ 0 < 𝑗) |
| 54 | 53 | intnand 488 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
| 55 | 54 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ 𝑗 = 0) → ¬
((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
| 56 | | breq2 5128 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑗)) |
| 57 | 56 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((𝑗 = 0 ∧ 𝑗 ≤ 𝑘) ↔ (𝑗 = 0 ∧ 𝑗 ≤ 𝑗))) |
| 58 | 23, 57 | bitrid 283 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝜑 ↔ (𝑗 = 0 ∧ 𝑗 ≤ 𝑗))) |
| 59 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (0 < 𝑘 ↔ 0 < 𝑗)) |
| 60 | 38, 59 | bitrid 283 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → (𝜓 ↔ 0 < 𝑗)) |
| 61 | 58, 60 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝜓) ↔ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗))) |
| 62 | 61 | notbid 318 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (¬ (𝜑 ∧ 𝜓) ↔ ¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗))) |
| 63 | 43, 44, 45, 47, 55, 62 | rspced 45158 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℕ0
∧ 𝑗 = 0) →
∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓)) |
| 64 | 46 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ ¬ 𝑗 = 0) →
𝑗 ∈
(ℤ≥‘𝑗)) |
| 65 | | id 22 |
. . . . . . . . . . . 12
⊢ (¬
𝑗 = 0 → ¬ 𝑗 = 0) |
| 66 | 65 | intnanrd 489 |
. . . . . . . . . . 11
⊢ (¬
𝑗 = 0 → ¬ (𝑗 = 0 ∧ 𝑗 ≤ 𝑗)) |
| 67 | 66 | intnanrd 489 |
. . . . . . . . . 10
⊢ (¬
𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
| 68 | 67 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ0
∧ ¬ 𝑗 = 0) →
¬ ((𝑗 = 0 ∧ 𝑗 ≤ 𝑗) ∧ 0 < 𝑗)) |
| 69 | 43, 44, 45, 64, 68, 62 | rspced 45158 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℕ0
∧ ¬ 𝑗 = 0) →
∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓)) |
| 70 | 63, 69 | pm2.61dan 812 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ0
→ ∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓)) |
| 71 | | rexnal 3090 |
. . . . . . 7
⊢
(∃𝑘 ∈
(ℤ≥‘𝑗) ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 72 | 70, 71 | sylib 218 |
. . . . . 6
⊢ (𝑗 ∈ ℕ0
→ ¬ ∀𝑘
∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 73 | 72 | nrex 3065 |
. . . . 5
⊢ ¬
∃𝑗 ∈
ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) |
| 74 | 20, 19, 18 | rexeqif 45157 |
. . . . 5
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℕ0 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 75 | 73, 74 | mtbir 323 |
. . . 4
⊢ ¬
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) |
| 76 | 42, 75 | pm3.2i 470 |
. . 3
⊢
((∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) ∧ ¬ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 77 | | annim 403 |
. . 3
⊢
(((∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) ∧ ¬ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) ↔ ¬ ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
| 78 | 76, 77 | mpbi 230 |
. 2
⊢ ¬
((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 79 | 78 | nimnbi2 45155 |
1
⊢ ¬
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |