Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz2nf Structured version   Visualization version   GIF version

Theorem rexanuz2nf 44189
Description: A simple counterexample related to theorem rexanuz2 15292, demonstrating the necessity of its disjoint variable constraints. Here, 𝑗 appears free in 𝜑, showing that without these constraints, rexanuz2 15292 and similar theorems would not hold (see rexanre 15289 and rexanuz 15288). (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
rexanuz2nf.1 𝑍 = ℕ0
rexanuz2nf.2 (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑘))
rexanuz2nf.3 (𝜓 ↔ 0 < 𝑘)
Assertion
Ref Expression
rexanuz2nf ¬ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable group:   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem rexanuz2nf
StepHypRef Expression
1 0nn0 12483 . . . . . . . 8 0 ∈ ℕ0
2 nn0ge0 12493 . . . . . . . . 9 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
32rgen 3063 . . . . . . . 8 𝑘 ∈ ℕ0 0 ≤ 𝑘
4 fveq2 6888 . . . . . . . . . . . 12 (𝑗 = 0 → (ℤ𝑗) = (ℤ‘0))
5 nn0uz 12860 . . . . . . . . . . . 12 0 = (ℤ‘0)
64, 5eqtr4di 2790 . . . . . . . . . . 11 (𝑗 = 0 → (ℤ𝑗) = ℕ0)
76raleqdv 3325 . . . . . . . . . 10 (𝑗 = 0 → (∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗𝑘)))
82ad2antlr 725 . . . . . . . . . . . 12 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ (𝑗 = 0 ∧ 𝑗𝑘)) → 0 ≤ 𝑘)
9 simpll 765 . . . . . . . . . . . . 13 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 𝑗 = 0)
10 simpr 485 . . . . . . . . . . . . . 14 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘)
119, 10eqbrtrd 5169 . . . . . . . . . . . . 13 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → 𝑗𝑘)
129, 11jca 512 . . . . . . . . . . . 12 (((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) ∧ 0 ≤ 𝑘) → (𝑗 = 0 ∧ 𝑗𝑘))
138, 12impbida 799 . . . . . . . . . . 11 ((𝑗 = 0 ∧ 𝑘 ∈ ℕ0) → ((𝑗 = 0 ∧ 𝑗𝑘) ↔ 0 ≤ 𝑘))
1413ralbidva 3175 . . . . . . . . . 10 (𝑗 = 0 → (∀𝑘 ∈ ℕ0 (𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘))
157, 14bitrd 278 . . . . . . . . 9 (𝑗 = 0 → (∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘))
1615rspcev 3612 . . . . . . . 8 ((0 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 0 ≤ 𝑘) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
171, 3, 16mp2an 690 . . . . . . 7 𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘)
18 rexanuz2nf.1 . . . . . . . . 9 𝑍 = ℕ0
19 nfcv 2903 . . . . . . . . 9 𝑗0
2018, 19nfcxfr 2901 . . . . . . . 8 𝑗𝑍
2120, 19, 18rexeqif 43846 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘) ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2217, 21mpbir 230 . . . . . 6 𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘)
23 rexanuz2nf.2 . . . . . . . 8 (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑘))
2423ralbii 3093 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2524rexbii 3094 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑗 = 0 ∧ 𝑗𝑘))
2622, 25mpbir 230 . . . . 5 𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑
27 1nn0 12484 . . . . . . . 8 1 ∈ ℕ0
28 nngt0 12239 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
2928rgen 3063 . . . . . . . 8 𝑘 ∈ ℕ 0 < 𝑘
30 fveq2 6888 . . . . . . . . . . 11 (𝑗 = 1 → (ℤ𝑗) = (ℤ‘1))
31 nnuz 12861 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3230, 31eqtr4di 2790 . . . . . . . . . 10 (𝑗 = 1 → (ℤ𝑗) = ℕ)
3332raleqdv 3325 . . . . . . . . 9 (𝑗 = 1 → (∀𝑘 ∈ (ℤ𝑗)0 < 𝑘 ↔ ∀𝑘 ∈ ℕ 0 < 𝑘))
3433rspcev 3612 . . . . . . . 8 ((1 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ 0 < 𝑘) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘)
3527, 29, 34mp2an 690 . . . . . . 7 𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘
3620, 19, 18rexeqif 43846 . . . . . . 7 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘 ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)0 < 𝑘)
3735, 36mpbir 230 . . . . . 6 𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘
38 rexanuz2nf.3 . . . . . . . 8 (𝜓 ↔ 0 < 𝑘)
3938ralbii 3093 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∀𝑘 ∈ (ℤ𝑗)0 < 𝑘)
4039rexbii 3094 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)0 < 𝑘)
4137, 40mpbir 230 . . . . 5 𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓
4226, 41pm3.2i 471 . . . 4 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
43 nfv 1917 . . . . . . . . 9 𝑘 ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)
44 nfcv 2903 . . . . . . . . 9 𝑘𝑗
45 nfcv 2903 . . . . . . . . 9 𝑘(ℤ𝑗)
465uzid3 44131 . . . . . . . . . 10 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ𝑗))
4746adantr 481 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑗 = 0) → 𝑗 ∈ (ℤ𝑗))
48 0re 11212 . . . . . . . . . . . . . 14 0 ∈ ℝ
4948ltnri 11319 . . . . . . . . . . . . 13 ¬ 0 < 0
5049a1i 11 . . . . . . . . . . . 12 (𝑗 = 0 → ¬ 0 < 0)
51 eqcom 2739 . . . . . . . . . . . . 13 (𝑗 = 0 ↔ 0 = 𝑗)
5251biimpi 215 . . . . . . . . . . . 12 (𝑗 = 0 → 0 = 𝑗)
5350, 52brneqtrd 43750 . . . . . . . . . . 11 (𝑗 = 0 → ¬ 0 < 𝑗)
5453intnand 489 . . . . . . . . . 10 (𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
5554adantl 482 . . . . . . . . 9 ((𝑗 ∈ ℕ0𝑗 = 0) → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
56 breq2 5151 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑗𝑘𝑗𝑗))
5756anbi2d 629 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝑗 = 0 ∧ 𝑗𝑘) ↔ (𝑗 = 0 ∧ 𝑗𝑗)))
5823, 57bitrid 282 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝜑 ↔ (𝑗 = 0 ∧ 𝑗𝑗)))
59 breq2 5151 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (0 < 𝑘 ↔ 0 < 𝑗))
6038, 59bitrid 282 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝜓 ↔ 0 < 𝑗))
6158, 60anbi12d 631 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝜓) ↔ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)))
6261notbid 317 . . . . . . . . 9 (𝑘 = 𝑗 → (¬ (𝜑𝜓) ↔ ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗)))
6343, 44, 45, 47, 55, 62rspced 43847 . . . . . . . 8 ((𝑗 ∈ ℕ0𝑗 = 0) → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
6446adantr 481 . . . . . . . . 9 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → 𝑗 ∈ (ℤ𝑗))
65 id 22 . . . . . . . . . . . 12 𝑗 = 0 → ¬ 𝑗 = 0)
6665intnanrd 490 . . . . . . . . . . 11 𝑗 = 0 → ¬ (𝑗 = 0 ∧ 𝑗𝑗))
6766intnanrd 490 . . . . . . . . . 10 𝑗 = 0 → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
6867adantl 482 . . . . . . . . 9 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → ¬ ((𝑗 = 0 ∧ 𝑗𝑗) ∧ 0 < 𝑗))
6943, 44, 45, 64, 68, 62rspced 43847 . . . . . . . 8 ((𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0) → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
7063, 69pm2.61dan 811 . . . . . . 7 (𝑗 ∈ ℕ0 → ∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓))
71 rexnal 3100 . . . . . . 7 (∃𝑘 ∈ (ℤ𝑗) ¬ (𝜑𝜓) ↔ ¬ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7270, 71sylib 217 . . . . . 6 (𝑗 ∈ ℕ0 → ¬ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7372nrex 3074 . . . . 5 ¬ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝜑𝜓)
7420, 19, 18rexeqif 43846 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7573, 74mtbir 322 . . . 4 ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)
7642, 75pm3.2i 471 . . 3 ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ∧ ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
77 annim 404 . . 3 (((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) ∧ ¬ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)) ↔ ¬ ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
7876, 77mpbi 229 . 2 ¬ ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
7978nimnbi2 43844 1 ¬ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070   class class class wbr 5147  cfv 6540  0cc0 11106  1c1 11107   < clt 11244  cle 11245  cn 12208  0cn0 12468  cuz 12818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator