MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noror Structured version   Visualization version   GIF version

Theorem noror 1533
Description: is expressible via . (Contributed by Remi, 26-Oct-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2023.)
Assertion
Ref Expression
noror ((𝜑𝜓) ↔ ((𝜑 𝜓) (𝜑 𝜓)))

Proof of Theorem noror
StepHypRef Expression
1 df-nor 1528 . . 3 ((𝜑 𝜓) ↔ ¬ (𝜑𝜓))
21con2bii 357 . 2 ((𝜑𝜓) ↔ ¬ (𝜑 𝜓))
3 nornot 1531 . 2 (¬ (𝜑 𝜓) ↔ ((𝜑 𝜓) (𝜑 𝜓)))
42, 3bitri 274 1 ((𝜑𝜓) ↔ ((𝜑 𝜓) (𝜑 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844   wnor 1527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-nor 1528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator