Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > noror | Structured version Visualization version GIF version |
Description: ∨ is expressible via ⊽. (Contributed by Remi, 26-Oct-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2023.) |
Ref | Expression |
---|---|
noror | ⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ⊽ 𝜓) ⊽ (𝜑 ⊽ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor 1525 | . . 3 ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) | |
2 | 1 | con2bii 357 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ ¬ (𝜑 ⊽ 𝜓)) |
3 | nornot 1528 | . 2 ⊢ (¬ (𝜑 ⊽ 𝜓) ↔ ((𝜑 ⊽ 𝜓) ⊽ (𝜑 ⊽ 𝜓))) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ ((𝜑 ⊽ 𝜓) ⊽ (𝜑 ⊽ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 843 ⊽ wnor 1524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-nor 1525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |