|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > noran | Structured version Visualization version GIF version | ||
| Description: ∧ is expressible via ⊽. (Contributed by Remi, 26-Oct-2023.) (Proof shortened by Wolf Lammen, 8-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| noran | ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ⊽ 𝜑) ⊽ (𝜓 ⊽ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anor 984 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | nornot 1530 | . . . 4 ⊢ (¬ 𝜑 ↔ (𝜑 ⊽ 𝜑)) | |
| 3 | nornot 1530 | . . . 4 ⊢ (¬ 𝜓 ↔ (𝜓 ⊽ 𝜓)) | |
| 4 | 2, 3 | orbi12i 914 | . . 3 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ((𝜑 ⊽ 𝜑) ∨ (𝜓 ⊽ 𝜓))) | 
| 5 | 1, 4 | xchbinx 334 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ ((𝜑 ⊽ 𝜑) ∨ (𝜓 ⊽ 𝜓))) | 
| 6 | df-nor 1528 | . 2 ⊢ (((𝜑 ⊽ 𝜑) ⊽ (𝜓 ⊽ 𝜓)) ↔ ¬ ((𝜑 ⊽ 𝜑) ∨ (𝜓 ⊽ 𝜓))) | |
| 7 | 5, 6 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ⊽ 𝜑) ⊽ (𝜓 ⊽ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ⊽ wnor 1527 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-nor 1528 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |